Imperial College London

Prof. Sandro Macchietto

Faculty of EngineeringDepartment of Chemical Engineering

Professor of Process Systems Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 6608s.macchietto Website

 
 
//

Assistant

 

Mrs Sarah Payne +44 (0)20 7594 5567

 
//

Location

 

ACEX 507aACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Santamaria:2018,
author = {Santamaria, FL and Macchietto, S},
pages = {1--8},
title = {Optimal cleaning scheduling and control of heat exchanger networks: Problem formulation and solution strategy},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - In crude oil processing heat exchanger fouling is a major problem because it reduces the thermal and hydraulic performance of the units which has a large effect in the energy efficiency and operational cost. Fouling mitigation alternatives are mandatory and two of the most common and effective are: flow distribution control in heat exchanger networks, and periodic cleanings. These two mitigation alternatives can be defined individually by solving two distinct optimization problems, an optimal control problem (NLP) for the optimal flow distribution, and an optimal scheduling problem (MINLP) for the cleaning scheduling. However, there are important interactions between these two mitigation strategies that are neglected when addressed independently, while solving the integrated scheduling and control problem has economic benefits, but it is highly challenging. Here we present a general, flexible and accurate formulation to model heat exchanger networks under fouling, and an efficient solution strategy to tackle the optimal control and optimal scheduling problems simultaneoulsy. The formulation is able to capture all the important interactions of the operation, and includes all variables for the various decisions. The integrated control and scheduling problem is reformulated as a MPCC (mathematical problem with complementarity constraints) and then solved using a NLP solver based on interior point methods. A case study of industrial significance is used to illustrate the advantages of the formulation, the efficiency of the solution, and the benefits of considering the control and scheduling optimization problems at the same decision level.
AU - Santamaria,FL
AU - Macchietto,S
EP - 8
PY - 2018///
SP - 1
TI - Optimal cleaning scheduling and control of heat exchanger networks: Problem formulation and solution strategy
ER -