Imperial College London

ProfessorSimonSchultz

Faculty of EngineeringDepartment of Bioengineering

Professor of Neurotechnology
 
 
 
//

Contact

 

s.schultz Website

 
 
//

Location

 

4.11Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

114 results found

Lin Y, Mazo M, Skaalure S, Thomas MR, Schultz SR, Stevens Met al., 2019, Activatable cell-biomaterial interfacing with photo-caged peptides, Chemical Science, Vol: 10, Pages: 1158-1167, ISSN: 2041-6520

Spatio-temporally tailoring cell–material interactions is essential for developing smart delivery systems and intelligent biointerfaces. Here we report new photo-activatable cell–material interfacing systems that trigger cellular uptake of various cargoes and cell adhesion towards surfaces. To achieve this, we designed a novel photo-caged peptide which undergoes a structural transition from an antifouling ligand to a cell-penetrating peptide upon photo-irradiation. When the peptide is conjugated to ligands of interest, we demonstrate the photo-activated cellular uptake of a wide range of cargoes, including small fluorophores, proteins, inorganic (e.g., quantum dots and gold nanostars) and organic nanomaterials (e.g., polymeric particles), and liposomes. Using this system, we can remotely regulate drug administration into cancer cells by functionalizing camptothecin-loaded polymeric nanoparticles with our synthetic peptide ligands. Furthermore, we show light-controlled cell adhesion on a peptide-modified surface and 3D spatiotemporal control over cellular uptake of nanoparticles using two-photon excitation. We anticipate that the innovative approach proposed in this work will help to establish new stimuli-responsive delivery systems and biomaterials.

Journal article

Quicke P, Howe CL, Song P, Jadan HV, Dragotti PL, Knöpfel T, Foust AJ, Schultz SR, Neil Met al., 2019, Calculation of high numerical aperture lightfield microscope point spread functions

3D deconvolution of lightfield images enables high resolution reconstruction of sample volumes. Previous point spread function calculations assume low to moderate NA objectives. Here we present a simple vectorial calculation valid for high NA objectives.

Conference paper

Lubba CT, Le Guen Y, Jarvis S, Jones N, Cork S, Eftekhar A, Schultz Set al., 2019, PyPNS: multiscale simulation of a peripheral nerve in Python, Neuroinformatics, Vol: 17, Pages: 63-81, ISSN: 1539-2791

Bioelectronic Medicines that modulate the activity patterns on peripheral nerves have promise as a new way of treating diverse medical conditions from epilepsy to rheumatism. Progress in the field builds upon time consuming and expensive experiments in living organisms. To reduce experimentation load and allow for a faster, more detailed analysis of peripheral nerve stimulation and recording, computational models incorporating experimental insights will be of great help.We present a peripheral nerve simulator that combines biophysical axon models and numerically solved and idealised extracellular space models in one environment. We modeled the extracellular space as a three-dimensional resistive continuum governed by the electro-quasistatic approximation of the Maxwell equations. Potential distributions were precomputed in finite element models for different media (homogeneous, nerve in saline, nerve in cuff) and imported into our simulator. Axons, on the other hand, were modeled more abstractly as one-dimensional chains of compartments. Unmyelinated fibres were based on the Hodgkin- Huxley model; for myelinated fibres, we adapted the model proposed by McIntyre et al. in 2002 to smaller diameters. To obtain realistic axon shapes, an iterative algorithm positioned fibres along the nerve with a variable tortuosity fit to imaged trajectories. We validated our model with data from the stimulated rat vagus nerve. Simulation results predicted that tortuosity alters recorded signal shapes and increases stimulation thresholds. The model we developed can easily be adapted to different nerves, and may be of use for Bioelectronic Medicine research in the future.

Journal article

Lubba CH, Fulcher BD, Schultz SR, Jones NSet al., 2019, Efficient peripheral nerve firing characterisation through massive feature extraction, 9th IEEE/EMBS International Conference on Neural Engineering (NER), Publisher: IEEE, Pages: 179-182, ISSN: 1948-3546

Conference paper

Go MA, Rogers J, Gava G, Davey C, Prado S, Liu Y, Schultz Set al., 2018, Place cells in head-fixed mice navigating a floating real-world environment

The hippocampal place cell system in rodents has provided a major paradigm for the scientific investigation of memory function and dysfunction. Place cells have been observed in area CA1 of the hippocampus of both freely moving animals, and of head-fixed animals navigating in virtual reality environments. However, spatial coding in virtual reality preparations has been observed to be impaired. Here we show that the use of a real-world environment system for head-fixed mice, consisting of a track floating on air, provides some advantages over virtual reality systems for the study of spatial memory. We imaged the hippocampus of head-fixed mice injected with the genetically encoded calcium indicator GCaMP6s while they navigated circularly constrained or open environments on the floating platform. We observed consistent place tuning in a substantial fraction of cells with place fields remapping when animals entered a different environment. When animals re-entered the same environment, place fields typically remapped over a time period of multiple days, faster than in freely moving preparations, but comparable with virtual reality. Spatial information rates were within the range observed in freely moving mice. Manifold analysis indicated that spatial information could be extracted from a low-dimensional subspace of the neural population dynamics. This is the first demonstration of place cells in head-fixed mice navigating on an air-lifted real-world platform, validating its use for the study of brain circuits involved in memory and affected by neurodegenerative disorders.

Working paper

Reynolds SC, abrahamsson T, sjostrom PJ, Schultz S, Dragotti PLet al., 2018, CosMIC: a consistent metric for spike inference from calcium imaging, Neural Computation, Vol: 30, Pages: 2726-2756, ISSN: 0899-7667

In recent years, the development of algorithms to detect neuronal spiking activity from two-photon calcium imaging data has received much attention. Meanwhile, few researchers have examined the metrics used to assess the similarity of detected spike trains with the ground truth. We highlight the limitations of the two most commonly used metrics, the spike train correlation and success rate, and propose an alternative, which we refer to as CosMIC. Rather than operating on the true and estimated spike trains directly, the proposed metric assesses the similarity of the pulse trains obtained from convolution of the spike trains with a smoothing pulse. The pulse width, which is derived from the statistics of the imaging data, reflects the temporal tolerance of the metric. The final metric score is the size of the commonalities of the pulse trains as a fraction of their average size. Viewed through the lens of set theory, CosMIC resembles a continuous Sørensen-Dice coefficient — an index commonly used to assess the similarity of discrete, presence/absence data. We demonstrate the ability of the proposed metric to discriminate the precision and recall of spike train estimates. Unlike the spike train correlation, which appears to reward overestimation, the proposed metric score is maximised when the correct number of spikes have been detected. Furthermore, we show that CosMIC is more sensitive to the temporal precision of estimates than the success rate.

Journal article

Muzzu T, Mitolo S, Gava GP, Schultz SRet al., 2018, Encoding of locomotion kinematics in the mouse cerebellum, PLoS ONE, Vol: 13, ISSN: 1932-6203

The cerebellum is involved in coordinating motor behaviour, but how the cerebellar network regulates locomotion is still not well understood. We characterised the activity of putative cerebellar Purkinje cells, Golgi cells and mossy fibres in awake mice engaged in an active locomotion task, using high-density silicon electrode arrays. Analysis of the activity of over 300 neurons in response to locomotion revealed that the majority of cells (53%) were significantly modulated by phase of the stepping cycle. However, in contrast to studies involving passive locomotion on a treadmill, we found that a high proportion of cells (45%) were tuned to the speed of locomotion, and 19% were tuned to yaw movements. The activity of neurons in the cerebellar vermis provided more information about future speed of locomotion than about past or present speed, suggesting a motor, rather than purely sensory, role. We were able to accurately decode the speed of locomotion with a simple linear algorithm, with only a relatively small number of well-chosen cells needed, irrespective of cell class. Our observations suggest that behavioural state modulates cerebellar sensorimotor integration, and advocate a role for the cerebellar vermis in control of high-level locomotor kinematic parameters such as speed and yaw.

Journal article

Quicke P, Reynolds S, Neil M, Knopfel T, Schultz S, Foust AJet al., 2018, High speed functional imaging with source localized multifocal two-photon microscopy, Biomedical Optics Express, Vol: 9, Pages: 3678-3693, ISSN: 2156-7085

Multifocal two-photon microscopy (MTPM) increases imaging speed over single-focus scanning by parallelizing fluorescence excitation. The imaged fluorescence’s susceptibility to crosstalk, however, severely degrades contrast in scattering tissue. Here we present a source-localized MTPM scheme optimized for high speed functional fluorescence imaging in scattering mammalian brain tissue. A rastered line array of beamlets excites fluorescence imaged with a complementary metal-oxide-semiconductor (CMOS) camera. We mitigate scattering-induced crosstalk by temporally oversampling the rastered image, generating grouped images with structured illumination, and applying Richardson-Lucy deconvolution to reassign scattered photons. Single images are then retrieved with a maximum intensity projection through the deconvolved image groups. This method increased image contrast at depths up to 112 μm in scattering brain tissue and reduced functional crosstalk between pixels during neuronal calcium imaging. Source-localization did not affect signal-to-noise ratio (SNR) in densely labeled tissue under our experimental conditions. SNR decreased at low frame rates in sparsely labeled tissue, with no effect at frame rates above 50 Hz. Our non-descanned source-localized MTPM system enables high SNR, 100 Hz capture of fluorescence transients in scattering brain, increasing the scope of MTPM to faster and smaller functional signals.

Journal article

Annecchino L, Schultz SR, 2018, Progress in automating patch clamp cellular physiology, Brain and Neuroscience Advances, Vol: 2, Pages: 1-16, ISSN: 2398-2128

Patch clamp electrophysiology has transformed research in the life sciences over the last few decades. Since theirinception, automatic patch clamp platforms have evolved considerably, demonstrating the capability to address bothvoltage and ligand gated channels, and showing the potential to play a pivotal role in drug discovery and biomedicalresearch. Unfortunately, the cell suspension assays to which early systems were limited cannot recreate biologicallyrelevant cellular environments, or capture higher-order aspects of synaptic physiology and network dynamics. In vivopatch clamp electrophysiology has the potential to yield more biologically complex information and be especially usefulin reverse engineering the molecular and cellular mechanisms of single-cell and network neuronal computation, whilecapturing important aspects of human disease mechanisms and possible therapeutic strategies. Unfortunately, it isa difficult procedure with a steep learning curve, which has restricted dissemination of the technique. Luckily, Invivo patch clamp electrophysiology seems particularly amenable to robotic automation. In this review, we documentthe development of automated patch clamp technology, from early systems based on multi-well plates through toautomated planar array platforms, and modern robotic platforms capable of performing two-photon targeted whole-cellelectrophysiological recordings in vivo.

Journal article

Jarvis S, Nikolic K, Schultz SR, 2018, Neuronal gain modulability is determined by dendritic morphology: a computational optogenetic study, PLoS Computational Biology, Vol: 14, ISSN: 1553-734X

The mechanisms by which the gain of the neuronal input-output function may be modulated have been the subject of much investigation. However, little is known of the role of dendrites in neuronal gain control. New optogenetic experimental paradigms based on spatial profiles or patterns of light stimulation offer the prospect of elucidating many aspects of single cell function, including the role of dendrites in gain control. We thus developed a model to investigate how competing excitatory and inhibitory input within the dendritic arbor alters neuronal gain, incorporating kinetic models of opsins into our modeling to ensure it is experimentally testable. To investigate how different topologies of the neuronal dendritic tree affect the neuron’s input-output characteristics we generate branching geometries which replicate morphological features of most common neurons, but keep the number of branches and overall area of dendrites approximately constant. We found a relationship between a neuron’s gain modulability and its dendritic morphology, with neurons with bipolar dendrites with a moderate degree of branching being most receptive to control of the gain of their input-output relationship. The theory was then tested and confirmed on two examples of realistic neurons: 1) layer V pyramidal cells—confirming their role in neural circuits as a regulator of the gain in the circuit in addition to acting as the primary excitatory neurons, and 2) stellate cells. In addition to providing testable predictions and a novel application of dual-opsins, our model suggests that innervation of all dendritic subdomains is required for full gain modulation, revealing the importance of dendritic targeting in the generation of neuronal gain control and the functions that it subserves. Finally, our study also demonstrates that neurophysiological investigations which use direct current injection into the soma and bypass the dendrites may miss some important neuronal functio

Journal article

Schuck R, Go MA, Garasto S, Reynolds S, Dragotti PL, Schultz SRet al., 2018, Multiphoton minimal inertia scanning for fast acquisition of neural activity signals, Journal of Neural Engineering, Vol: 15, ISSN: 1741-2552

Objective: Multi-photon laser scanning microscopy provides a powerful tool for monitoring the spatiotemporal dynamics of neural circuit activity. It is, however, intrinsically a point scanning technique. Standard raster scanning enables imaging at subcellular resolution; however, acquisition rates are limited by the size of the field of view to be scanned. Recently developed scanning strategies such as Travelling Salesman Scanning (TSS) have been developed to maximize cellular sampling rate by scanning only select regions in the field of view corresponding to locations of interest such as somata. However, such strategies are not optimized for the mechanical properties of galvanometric scanners. We thus aimed to develop a new scanning algorithm which produces minimal inertia trajectories, and compare its performance with existing scanning algorithms.
 Approach: We describe here the Adaptive Spiral Scanning (SSA) algorithm, which fits a set of near-circular trajectories to the cellular distribution to avoid inertial drifts of galvanometer position. We compare its performance to raster scanning and TSS in terms of cellular sampling frequency and signal-to-noise ratio (SNR).
 Main Results: Using surrogate neuron spatial position data, we show that SSA acquisition rates
 are an order of magnitude higher than those for raster scanning and generally exceed those achieved by TSS for neural densities comparable with those found in the cortex. We show that this result also holds true for in vitro hippocampal mouse brain slices bath loaded with the synthetic calcium dye Cal-520 AM. The ability of TSS to "park" the laser on each neuron along the scanning trajectory, however, enables higher SNR than SSA when all targets are precisely scanned. Raster scanning has the highest SNR but at a substantial cost in number of cells scanned. To understand the impact of sampling rate and SNR on functional calcium imaging, we used the Crame ́r-Rao Bound on e

Journal article

Reynolds SC, Abrahamsson T, Schuck R, Sjöström PJ, Schultz SR, Dragotti PLet al., 2017, ABLE: an activity-based level set segmentation algorithm for two-photon calcium imaging data, eNeuro, Vol: 4, Pages: 1-13, ISSN: 2373-2822

We present an algorithm for detecting the location of cells from two-photon calcium imaging data. In our framework, multiple coupled active contours evolve, guided by a model-based cost function, to identify cell boundaries. An active contour seeks to partition a local region into two subregions, a cell interior and exterior, in which all pixels have maximally ‘similar’ time courses. This simple, local model allows contours to be evolved predominantly independently. When contours are sufficiently close, their evolution is coupled, in a manner that permits overlap. We illustrate the ability of the proposed method to demix overlapping cells on real data. The proposed framework is flexible, incorporating no prior information regarding a cell’s morphology or stereotypical temporal activity, which enables the detection of cells with diverse properties. We demonstrate algorithm performance on a challenging mouse in vitro dataset, containing synchronously spiking cells, and a manually labelled mouse in vivo dataset, on which ABLE achieves a 67.5% success rate.

Journal article

Lubba CH, Guen YL, Jarvis S, Jones NS, Cork SC, Eftekhar A, Schultz SRet al., 2017, Multiscale simulation of peripheral neural signaling

<jats:title>Abstract</jats:title><jats:p>Bioelectronic Medicines that modulate the activity patterns on peripheral nerves have promise as a new way of treating diverse medical conditions from epilepsy to rheumatism. Progress in the field builds upon time consuming and expensive experiments in living organisms to evaluate spontaneous activity patterns, stimulation efficiency, and organ responses. To reduce experimentation load and allow for a faster, more detailed analysis of both recording from and stimulation of peripheral nerves, adaptable computational models incorporating insights won in experiments will be of great help. We present a peripheral nerve simulator that combines biophysical axon models and numerically solved and idealized extracellular space models in one environment. Two different scales of abstraction were merged. On the one hand we modeled the extracellular space in a finite element solver as a three dimensional resistive continuum governed by the electro-quasistatic approximation of the Maxwell equations. Potential distributions were precomputed for different media (homogeneous, nerve in saline, nerve in cuff). Axons, on the other hand, were modeled at a higher level of abstraction as one dimensional chains of compartments; each consisting of lumped linear elements and, for some, channels with non-linear dynamics. Unmyelinated fibres were based on the Hodgkin-Huxley model; for myelinated fibers, we instead adapted the model proposed by McIntyre et al. in 2002 to smaller diameters. To obtain realistic axon shapes, an iterative algorithm positioned fibers along the nerve with variable tortuosity, with tortuosity values fit to imaged trajectories. We validated our model with data from the stimulated rat vagus nerve. Simulation results predicted that tortuosity leads to differentiation in recorded signal shapes, with unmyelinated axons being the most affected. Tortuosity was further shown to increase the stimulation threshold. The

Working paper

Schuck R, Go MA, Garasto S, Reynolds S, Dragotti PL, Schultz SRet al., 2017, Multiphoton minimal inertia scanning for fast acquisition of neural activity signals

<jats:title>Abstract</jats:title><jats:p>Multi-photon laser scanning microscopy provides a powerful tool for monitoring the spatiotemporal dynamics of neural circuit activity. It is, however, intrinsically a point scanning technique. Standard raster scanning enables imaging at subcellular resolution; however, acquisition rates are limited by the size of the field of view to be scanned. Recently developed scanning strategies such as Travelling Salesman Scanning (TSS) have been developed to maximize cellular sampling rate by scanning only regions of interest in the field of view corresponding to locations of interest such as somata. However, such strategies are not optimized for the mechanical properties of galvanometric scanners. We describe here the Adaptive Spiral Scanning (SSA) algorithm, which fits a set of near-circular trajectories to the cellular distribution to avoid inertial drifts of galvanometer position. We compare its performance to raster scanning and TSS in terms of cellular sampling frequency and signal-to-noise ratio (SNR). Using surrogate neuron spatial position data, we show that SSA acquisition rates are an order of magnitude higher than those for raster scanning and generally exceed those achieved by TSS for neural densities comparable with those found in the cortex. We show that this result also holds true for <jats:italic>in vitro</jats:italic> hippocampal mouse brain slices bath loaded with the synthetic calcium dye Cal-520 AM. The ability of TSS to ”park” the laser on each neuron along the scanning trajectory, however, enables higher SNR than SSA when all targets are precisely scanned. Raster scanning has the highest SNR but at a substantial cost in number of cells scanned. To understand the impact of sampling rate and SNR on functional calcium imaging, we used the Cramér-Rao Bound on evoked calcium traces recorded simultaneously with electrophysiology traces to calculate the lower bound estima

Working paper

Quicke P, Neil M, Knopfel T, Schultz SR, Foust AJet al., 2017, Source-Localized Multifocal Two-Photon Microscopy for High-Speed Functional Imaging, 71st Annual Meeting of the Society-of-General-Physiologists (SGP) on Optical Revolution in Physiology - From Membrane to Brain, Publisher: ROCKEFELLER UNIV PRESS, Pages: 13A-14A, ISSN: 0022-1295

Conference paper

Annecchino LA, Morris AR, Copeland CS, Agabi OE, Chadderton P, Schultz SRet al., 2017, Robotic automation of in vivo two photon targeted whole-cell patch clamp electrophysiology, Neuron, Vol: 95, Pages: 1048-1055.e3, ISSN: 0896-6273

Whole-cell patch-clamp electrophysiological recording is a powerful technique for studying cellular function. While in vivo patch-clamp recording has recently benefited from automation, it is normally performed “blind,” meaning that throughput for sampling some genetically or morphologically defined cell types is unacceptably low. One solution to this problem is to use two-photon microscopy to target fluorescently labeled neurons. Combining this with robotic automation is difficult, however, as micropipette penetration induces tissue deformation, moving target cells from their initial location. Here we describe a platform for automated two-photon targeted patch-clamp recording, which solves this problem by making use of a closed loop visual servo algorithm. Our system keeps the target cell in focus while iteratively adjusting the pipette approach trajectory to compensate for tissue motion. We demonstrate platform validation with patch-clamp recordings from a variety of cells in the mouse neocortex and cerebellum.

Journal article

Cazé RD, Jarvis S, Foust AJ, Schultz SRet al., 2017, Dendrites enable a robust mechanism for neuronal stimulus selectivity, Neural Computation, Vol: 29, Pages: 2511-2527, ISSN: 0899-7667

Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.

Journal article

Lubba C, Mitrani E, Hokanson J, Grill WM, Schultz SRet al., 2017, Real-time decoding of bladder pressure from pelvic nerve activity, 8th International IEEE/EMBS Conference on Neural Engineering (NER), Publisher: IEEE, Pages: 617-620, ISSN: 1948-3546

There has been substantial recent interest in the development of bioelectronic medicines (also known as “electroceuticals”) [1]. Bioelectronic medicines consist of implantable devices capable of treating diseases by modulation of the nervous system. While substantial progress has been made in the treatment of some central nervous system disorders such as Parkinson's Disease by deep brain stimulation [2], recently attention is focused on development of neuromodulation strategies for the peripheral nervous system [3]. The development of strategies for interfacing with and modulating the activity of peripheral nerves to the viscera may offer the prospect of extending bioelectronic medicine beyond diseases of the central nervous system, to the much larger class of non-neurological diseases that can be affected by electrical signalling in the peripheral nervous system, ranging from hypertension [4] to sleep apnea [5], rheumatoid arthritis [6] and sepsis [7].

Conference paper

Jarvis S, Nikolic K, Schultz SR, 2016, Neuronal gain modulability is determined by dendritic morphology: a computational optogenetic study

<jats:title>Abstract</jats:title><jats:p>The mechanisms by which the gain of the neuronal input-output function may be modulated have been the subject of much investigation. However, little is known of the role of dendrites in neuronal gain control. New optogenetic experimental paradigms based on spatial profiles or patterns of light stimulation offer the prospect of elucidating many aspects of single cell function, including the role of dendrites in gain control. We thus developed a model to investigate how competing excitatory and inhibitory input within the dendritic arbor alters neuronal gain, incorporating kinetic models of opsins into our modeling to ensure it is experimentally testable. To investigate how different topologies of the neuronal dendritic tree affect the neuron’s input-output characteristics we generate branching geometries which replicate morphological features of most common neurons, but keep the number of branches and overall area of dendrites approximately constant. We found a relationship between a neuron’s gain modulability and its dendritic morphology, with neurons with bipolar dendrites with a moderate degree of branching being most receptive to control of the gain of their input-output relationship. The theory was then tested and confirmed on two examples of realistic neurons: 1) layer V pyramidal cells - confirming their role in neural circuits as a regulator of the gain in the circuit in addition to acting as the primary excitatory neurons, and 2) stellate cells. In addition to providing testable predictions and a novel application of dual-opsins, our model suggests that innervation of all dendritic subdomains is required for full gain modulation, revealing the importance of dendritic targeting in the generation of neuronal gain control and the functions that it subserves. Finally, our study also demonstrates that neurophysiological investigations which use direct current injection into the soma and bypass

Working paper

Muzzu T, Mitolo S, Pietro Gava G, Schultz SRet al., 2016, Encoding of locomotion kinematics in the mouse cerebellum

<jats:title>Abstract</jats:title><jats:p>The cerebellum has a well-established role in locomotion control, but how the cerebellar network regulates locomotion behaviour is still not well understood. We therefore characterized the activity of cerebellar neurons in awake mice engaged in a locomotion task, using high-density silicon electrode arrays. We characterized the activity of over 300 neurons in response to locomotion, finding tuning to speed of locomotion, turning, and phase of the step cycle. We found that the cerebellar neurons we recorded mainly encoded information about future locomotor activity. We were able to decode the speed of locomotion with a simple linear algorithm, needing relatively few well-chosen cells to provide an accurate estimate of locomotion speed. Our observation that cerebellar neuronal activity predicts locomotion in the near future, and encodes the required kinematic variables, points to this activity underlying the efference copy signal for vertebrate locomotion.</jats:p>

Working paper

Schultz SR, Copeland CS, Foust AJ, Quicke P, Schuck Ret al., 2016, Advances in two-photon scanning and scanless microscopy technologies for functional neural circuit imaging, Proceedings of the IEEE, Vol: 105, Pages: 139-157, ISSN: 0018-9219

Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large-scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this paper, we will review some key recent advances: improved fluorophores for single-cell resolution functional neuroimaging using a two-photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity that scale well with pattern size.

Journal article

Seemungal BM, Yousif N, Abou-El-Ela-Bourquin B, Fu R, Bhrugubanda V, Schultz SRet al., 2016, Dopamine activation preserves visual motion perception despite noise interference of human V5/MT, Journal of Neuroscience, Vol: 36, Pages: 9303-9312, ISSN: 1529-2401

When processing sensory signals, the brain must account for noise, both noise in the stimulus and that arising from within its own neuronal circuitry. Dopamine receptor activation is known to enhance both visual cortical signal-to-noise-ratio (SNR) and visual perceptual performance; however, it is unknown whether these two dopamine-mediated phenomena are linked. To assess this, we used single-pulse transcranial magnetic stimulation (TMS) applied to visual cortical area V5/MT to reduce the SNR focally and thus disrupt visual motion discrimination performance to visual targets located in the same retinotopic space. The hypothesis that dopamine receptor activation enhances perceptual performance by improving cortical SNR predicts that dopamine activation should antagonize TMS disruption of visual perception. We assessed this hypothesis via a double-blinded, placebo-controlled study with the dopamine receptor agonists cabergoline (a D2 agonist) and pergolide (a D1/D2 agonist) administered in separate sessions (separated by 2 weeks) in 12 healthy volunteers in a William's balance-order design. TMS degraded visual motion perception when the evoked phosphene and the visual stimulus overlapped in time and space in the placebo and cabergoline conditions, but not in the pergolide condition. This suggests that dopamine D1 or combined D1 and D2 receptor activation enhances cortical SNR to boost perceptual performance. That local visual cortical excitability was unchanged across drug conditions suggests the involvement of long-range intracortical interactions in this D1 effect. Because increased internal noise (and thus lower SNR) can impair visual perceptual learning, improving visual cortical SNR via D1/D2 agonist therapy may be useful in boosting rehabilitation programs involving visual perceptual training.

Journal article

Ruz ID, Schultz SR, 2016, Fractured tonotopy of functional neural clusters in mouse auditory cortex

<jats:title>Abstract</jats:title><jats:p>The degree of order versus randomness in mammalian cortical circuits has been the subject of much discussion. Previous reports showed that at a large scale there is smooth tonotopy in mouse auditory cortex, while at the single neuron level the representation is the traditional “salt and pepper” configuration attributed to rodent cortex. Here we show that at the micro columnar scale we find a large variety of response profiles, but neurons tend to share similar preference in terms of frequency, bandwidth and latency. However, this smooth representation was fractured and large differences were possible between neighbouring neurons. Despite the tendency of most groups of neurons to operate redundantly, high information gains were achieved between cells that had a high signal correlation. Connectivity between neurons was highly non-random, in agreement with a previous in-vitro report from layer five. Our results suggest the existence of functional clusters, connecting neighbouring mini-columns. This supports the idea of a “salt and pepper” configuration at the level of functional clusters of neurons rather than single units.</jats:p>

Working paper

Reynolds S, Copeland CS, Schultz SR, Dragotti PLet al., 2016, An extension of the FRI framework for calcium transient detection, IEEE 13th International Symposium on Biomedical Imaging (ISBI), Publisher: IEEE, Pages: 676-679, ISSN: 1945-7928

Two-photon calcium imaging of the brain allows the spatiotemporal activity of neuronal networks to be monitored at cellular resolution. In order to analyse this activity it must first be possible to detect, with high temporal resolution, spikes from the time series corresponding to single neurons. Previous work has shown that finite rate of innovation (FRI) theory can be used to reconstruct spike trains from noisy calcium imaging data. In this paper we extend the FRI framework for spike detection from calcium imaging data to encompass data generated by a larger class of calcium indicators, including the genetically encoded indicator GCaMP6s. Furthermore, we implement least squares model-order estimation and perform a noise reduction procedure ('pre-whitening') in order to increase the robustness of the algorithm. We demonstrate high spike detection performance on real data generated by GCaMP6s, detecting 90% of electrophysiologically-validated spikes.

Conference paper

Phoka E, Berditchevskaia A, Barahona M, Schultz SRet al., 2016, Long-term, layer-specific reverberant activity in the mouse somatosensory cortex following sensory stimulation

<jats:p>Neocortical circuits exhibit spontaneous neuronal activity whose functional relevance remains enigmatic. Several proposed functions assume that sensory experience can influence subsequent spontaneous activity. However, long-term alterations in spontaneous firing rates following sensory stimulation have not been reported until now. Here we show that multi-whisker, spatiotemporally rich stimulation of mouse vibrissae induces a laminar-specific, long-term increase of spontaneous activity in the somatosensory cortex. Such stimulation additionally produces stereotypical neural ensemble firing patterns from simultaneously recorded single neurons, which are maintained during spontaneous activity following stimulus offset. The increased neural activity and concomitant ensemble firing patterns are sustained for at least 25 minutes after stimulation, and specific to layers IV and Vb. In contrast, the same stimulation protocol applied to a single whisker fails to elicit this effect. Since layer Vb has the largest receptive fields and, together with layer IV, receives direct thalamic and lateral drive, the increase in firing activity could be the result of mechanisms involving the integration of spatiotemporal patterns across multiple whiskers. Our results provide direct evidence of modification of spontaneous cortical activity by sensory stimulation and could offer insight into the role of spatiotemporal integration in memory storage mechanisms for complex stimuli.</jats:p>

Working paper

Berditchevskaia A, Caze R, Schultz SR, 2016, Performance in a GO/NOGO perceptual task reflects a balance between impulsive and instrumental components of behaviour, Scientific Reports, Vol: 6, ISSN: 2045-2322

In recent years, simple GO/NOGO behavioural tasks have become popular due to the relative ease with which they can be combined with technologies such as in vivo multiphoton imaging. To date, it has been assumed that behavioural performance can be captured by the average performance across a session, however this neglects the effect of motivation on behaviour within individual sessions. We investigated the effect of motivation on mice performing a GO/NOGO visual discrimination task. Performance within a session tended to follow a stereotypical trajectory on a Receiver Operating Characteristic (ROC) chart, beginning with an over-motivated state with many false positives, and transitioning through a more or less optimal regime to end with a low hit rate after satiation. Our observations are reproduced by a new model, the Motivated Actor-Critic, introduced here. Our results suggest that standard measures of discriminability, obtained by averaging across a session, may significantly underestimate behavioural performance.

Journal article

Yousif N, Fu R, Abou-El-Ela-Bourquin B, Bhrugubanda V, Schultz S, Seemungal BMet al., 2016, Dopamine preserves visual motion perception despite noise interference of human V5/MT, European Academy of Neurology, Publisher: WILEY, Pages: 874-874, ISSN: 1351-5101

Conference paper

Berditchevskaia A, Cazé RD, Schultz SR, 2016, Performance in a GO/NOGO perceptual task reflects a balance between impulsive and instrumental components of behaviour

<jats:title>Abstract</jats:title><jats:p>In recent years, simple GO/NOGO behavioural tasks have become popular due to the relative ease with which they can be combined with technologies such as <jats:italic>in vivo</jats:italic> multiphoton imaging. To date, it has been assumed that behavioural performance can be captured by the average performance across a session, however this neglects the effect of motivation on behaviour within individual sessions. We investigated the effect of motivation on mice performing a GO/NOGO visual discrimination task. Performance within a session tended to follow a stereotypical trajectory on a Receiver Operating Characteristic (ROC) chart, beginning with an over-motivated state with many false positives, and transitioning through a more or less optimal regime to end with a low hit rate after satiation. Our observations are reproduced by a new model, the Motivated Actor-Critic, introduced here. Our results suggest that standard measures of discriminability, obtained by averaging across a session, may significantly underestimate behavioural performance.</jats:p>

Working paper

Evans B, Jarvis S, Schultz S, Nikolic Ket al., 2016, PyRhO: A Multiscale Optogenetics Simulation Platform, Frontiers in Neuroinformatics, Vol: 10, ISSN: 1662-5196

Optogenetics has become a key tool for understanding the function of neural circuits and controlling their behavior. An array of directly light driven opsins have been genetically isolated from several families of organisms, with a wide range of temporal and spectral properties. In order to characterize, understand and apply these opsins, we present an integrated suite of open-source, multi-scale computational tools called PyRhO. The purpose of developing PyRhO is three-fold: (i) to characterize new (and existing) opsins by automatically fitting a minimal set of experimental data to three-, four-, or six-state kinetic models, (ii) to simulate these models at the channel, neuron and network levels, and (iii) provide functional insights through model selection and virtual experiments in silico. The module is written in Python with an additional IPython/Jupyter notebook based GUI, allowing models to be fit, simulations to be run and results to be shared through simply interacting with a webpage. The seamless integration of model fitting algorithms with simulation environments (including NEURON and Brian2) for these virtual opsins will enable neuroscientists to gain a comprehensive understanding of their behavior and rapidly identify the most suitable variant for application in a particular biological system. This process may thereby guide not only experimental design and opsin choice but also alterations of the opsin genetic code in a neuro-engineering feed-back loop. In this way, we expect PyRhO will help to significantly advance optogenetics as a tool for transforming biological sciences.

Journal article

Cheung K, Schultz SR, Luk W, 2016, NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors, Frontiers in Neuroscience, Vol: 9, ISSN: 1662-4548

NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00422016&limit=30&person=true&page=2&respub-action=search.html