Imperial College London

Dr Samuel J Cooper

Faculty of EngineeringDyson School of Design Engineering

Lecturer
 
 
 
//

Contact

 

samuel.cooper Website

 
 
//

Location

 

ObservatorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

16 results found

Cooper SJ, Bertei A, Finegan DP, Brandon NPet al., 2017, Simulated impedance of diffusion in porous media, ELECTROCHIMICA ACTA, Vol: 251, Pages: 681-689, ISSN: 0013-4686

JOURNAL ARTICLE

Cooper SJ, Brandon NP, 2017, An Introduction to Solid Oxide Fuel Cell Materials, Technology and Applications, ISBN: 9780128097243

© 2017 Elsevier Ltd. All rights reserved. This chapter begins with a brief history of fuel cell development and introduces solid oxide fuel cells (SOFCs) as high efficiency energy conversion devices. Following this the fundamentals of SOFC performance and cell design are explored, with special focus given to the significance of operating temperature and microstructure. Next the current commercial status of SOFCs is outlined in brief. Finally, SOFC degradation, the major theme of this book, is introduced; the various mechanisms are split into the two broad categories of physical and chemical degradation.

BOOK

Cooper SJ, Niania M, Hoffmann F, Kilner JAet al., 2017, Back-exchange: a novel approach to quantifying oxygen diffusion and surface exchange in ambient atmospheres, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, Vol: 19, Pages: 12199-12205, ISSN: 1463-9076

JOURNAL ARTICLE

Cooper SJ, brandon NP, 2017, Solid Oxide Fuel Cell Lifetime and Reliability, Solid Oxide Fuel Cell Lifetime and Reliability Critical Challenges in Fuel Cells, Editors: Ruiz-Trejo, BOLDRIN, Publisher: Academic Press, Pages: 1-15, ISBN: 9780128097243

For its holistic approach, this book can be used both as an introduction to these issues and a reference resource for all involved in research and application of solid oxide fuel cells, especially those developing understanding in ...

BOOK CHAPTER

Cooper SJ, Bertei A, Shearing PR, Kilner JA, Brandon NPet al., 2016, TauFactor: An open-source application for calculating tortuosity factors from tomographic data, SoftwareX, Vol: 5, Pages: 203-210

© 2016 The Author(s) TauFactor is a MatLab application for efficiently calculating the tortuosity factor, as well as volume fractions, surface areas and triple phase boundary densities, from image based microstructural data. The tortuosity factor quantifies the apparent decrease in diffusive transport resulting from convolutions of the flow paths through porous media. TauFactor was originally developed to improve the understanding of electrode microstructures for batteries and fuel cells; however, the tortuosity factor has been of interest to a wide range of disciplines for over a century, including geoscience, biology and optics. It is still common practice to use correlations, such as that developed by Bruggeman, to approximate the tortuosity factor, but in recent years the increasing availability of 3D imaging techniques has spurred interest in calculating this quantity more directly. This tool provides a fast and accurate computational platform applicable to the big datasets ( > 10 8 voxels) typical of modern tomography, without requiring high computational power.

JOURNAL ARTICLE

Finegan DP, Cooper SJ, Tjaden B, Taiwo OO, Gelb J, Hinds G, Brett DJL, Shearing PRet al., 2016, Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy, JOURNAL OF POWER SOURCES, Vol: 333, Pages: 184-192, ISSN: 0378-7753

JOURNAL ARTICLE

Ni N, Cooper SJ, Williams R, Kemen N, McComb DW, Skinner SJet al., 2016, Degradation of (La0.6Sr0.4)(0.95)(Co0.2Fe0.8)O3-delta Solid Oxide Fuel Cell Cathodes at the Nanometer Scale and below, ACS APPLIED MATERIALS & INTERFACES, Vol: 8, Pages: 17360-17370, ISSN: 1944-8244

JOURNAL ARTICLE

Tjaden B, Cooper SJ, Brett DJL, Kramer D, Shearing PRet al., 2016, On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems, CURRENT OPINION IN CHEMICAL ENGINEERING, Vol: 12, Pages: 44-51, ISSN: 2211-3398

JOURNAL ARTICLE

Cooper SJ, Li T, Bradley RS, Li K, Brandon NP, Kilner JAet al., 2015, Multi length-scale quantification of hierarchical microstructure in designed microtubular SOFC electrodes, Pages: 1857-1864, ISSN: 1938-5862

© The Electrochemical Society. The transport properties of a micro-tubular solid oxide fuel cell (MT-SOFC) anode have been analysed by imaging and simulation at multiple length-scales. The anode support investigated was manufactured using a phase inversion-assisted co-extrusion process, which generated a hierarchical and highly anisotropic microstructure. The resulting pore network was observed to contain two distinct, but interacting transport systems. The features in these systems spanned several orders of magnitude and as such it was not possible to image or model them simultaneously. The simulations indicated that the design of the microstructure was beneficial for the radial transport required by these cells; however this conclusion was only obtained by considering diffusive systems at many length-scales.

CONFERENCE PAPER

Tariq F, Kishimoto M, Cui G, Yufit V, Lomberg M, Ruiz-Trejo E, Chen Z, Brandon NPet al., 2015, Advanced 3D imaging and analysis of SOFC electrodes, Pages: 2067-2074, ISSN: 1938-5862

© The Electrochemical Society. An ability to meet our increasing energy demands will be facilitated though improving the next generation of electrochemical devices. The ability to directly image in 3D and analyse solid oxide fuel cell (SOFC) electrodes at high resolutions provides key insights in understanding structure-property relationships; as electrochemical reactions and transport phenomena are strongly affected by complex microstructure. Here we use tomographic techniques to probe 3D electrode structures at nanometer to micrometer length scales. In doing so the first characterisation of specific necks and interfaces alongside their particle sizes within SOFC electrodes is derived. Micro/nano structural changes are followed to facilitate understanding the differences which occur with shape, structures and morphology at high resolution. These are correlated with both measured experimental values and simulations to provide insight into microstructure-property relationships. We also demonstrate approaches to intelligently design electrodes through scaffolds, and potentially 3D printed structures, all towards optimising the structure for performance.

CONFERENCE PAPER

Cooper SJ, Eastwood DS, Gelb J, Damblanc G, Brett DJL, Bradley RS, Withers PJ, Lee PD, Marquis AJ, Brandon NP, Shearing PRet al., 2014, Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries, JOURNAL OF POWER SOURCES, Vol: 247, Pages: 1033-1039, ISSN: 0378-7753

JOURNAL ARTICLE

Eastwood DS, Bradley RS, Tariq F, Cooper SJ, Taiwo OO, Gelb J, Merkle A, Brett DJL, Brandon NP, Withers PJ, Lee PD, Shearing PRet al., 2014, The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes, NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, Vol: 324, Pages: 118-123, ISSN: 0168-583X

JOURNAL ARTICLE

Cooper SJ, Kishimoto M, Tariq F, Bradley RS, Marquis AJ, Brandon NP, Kilner J, Shearing PRet al., 2013, Microstructural Analysis of an LSCF Cathode Using In-Situ Tomography and Simulation, SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), Vol: 57, Pages: 2671-2678, ISSN: 1938-5862

JOURNAL ARTICLE

Shearing PR, Eastwood DS, Bradley RS, Gelb J, Cooper SJ, Tariq F, Brett DJ, Brandon NP, Withers PJ, Lee PDet al., 2013, Exploring electrochemical devices using X-ray microscopy: 3D microstructure of batteries and fuel cells, Microscopy and Analysis, Vol: 27

JOURNAL ARTICLE

Tariq F, Kishimoto M, Cooper SJ, Shearing P, Brandon Net al., 2013, Advanced 3D Imaging and Analysis of SOFC Electrodes, SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), Vol: 57, Pages: 2553-2562, ISSN: 1938-5862

JOURNAL ARTICLE

Shearing PR, Brandon NP, Gelb J, Bradley R, Withers PJ, Marquis AJ, Cooper S, Harris SJet al., 2012, Multi Length Scale Microstructural Investigations of a Commercially Available Li-Ion Battery Electrode, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, Vol: 159, Pages: A1023-A1027, ISSN: 0013-4651

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00513319&limit=30&person=true