Imperial College London


Faculty of Natural SciencesDepartment of Physics

Reader in Plasma Physics



+44 (0)20 7594 9643stuart.mangles Website




725Blackett LaboratorySouth Kensington Campus





In my research, I use intense laser-plasma interactions to create new kinds of compact particle accelerators and X-ray light sources, and I exploit the unique properties of these sources to explore the physics of extreme conditions. 

Particle accelerators are well known as important tools of scientific discovery, but they are large and expensive machines. The laser wakefield acceleration technique I research now allows high-energy particle and X-ray beams to be produced in a university size laboratory. Using these accelerators we can now produce multi-GeV electron beams in a plasma accelerator just a few centimetres long (something which a conventional accelerator can only achieve in one hundred metres or more). 

The unique properties of the beams that laser wakefield accelerators produce, together with their co-location and easy synchronization with other high-power laser sources, are now helping to drive a new generation of experiments.  These experiments aim to understand how matter behaves under extreme conditions – extremely high temperatures, densities and electromagnetic field intensities compared to anything found on Earth, but conditions that are surprisingly common and important throughout the universe. 



Mangles S, 2020, Bright x-ray radiation from plasma bubbles in an evolving laser wakefield accelerator, Physical Review Accelerators and Beams, Vol:23, ISSN:2469-9888, Pages:061301 – 1-061301 – 6

Blackburn TG, Gerstmayr E, Mangles SPD, et al., 2020, Model-independent inference of laser intensity, Physical Review Accelerators and Beams, Vol:23, ISSN:2469-9888

Behm K, Hussein AE, Zhao TZ, et al., 2020, Demonstration of femtosecond broadband X-rays from laser wakefield acceleration as a source for pump-probe X-ray absorption studies, High Energy Density Physics, Vol:35, ISSN:1574-1818, Pages:1-5

Schwab MB, Siminos E, Heinemann T, et al., 2020, Visualization of relativistic laser pulses in underdense plasma, Physical Review Accelerators and Beams, Vol:23, ISSN:2469-9888

Hussein AE, Senabulya N, Ma Y, et al., 2020, Author Correction: Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures, Scientific Reports, Vol:10, ISSN:2045-2322

More Publications