Imperial College London


Faculty of Engineering

Director of the Energy Futures Laboratory (EFL)



+44 (0)20 7594 Website CV




Miss Linnea Luuppala +44 (0)20 7594 5865




Energy Futures Lab, Electrical Eng BuildingElectrical EngineeringSouth Kensington Campus





My research explores the technologies that will shape the future form the electricity supply system, in particular, I pursue the use of power electronics and distributed control to create flexibility and enhance functionality in existing power networks. Although power electronics is a relatively expensive technology compared with traditional transformers and cables, it can provide facilitate much better use of existing assets and thus make a good case for investment.

My thesis is that power electronics has the greatest role to play at the two ends of the electricity network. At the “top”, we need to reinforce our national and international transmission networks to transfer bulk power. The flows we are interest in are from very large windfarms in the North Sea and to and from other European countries. We can foresee a set of subsea connections around the British coast and these cables will need to be operated on DC.  A large fraction of my work and recent publications are in how to optimise the design of very large DC to AC power converters to interface these links. This work has been supported by EPSRC and Alstom Grid. I am also interest in how DC links can be controlled to actively support operation of the main on-shore AC network (in addition to simply transferring energy).

The other end of the system, the “tail”, is the final distribution from the local substation into homes and offices. We anticipate that this well established network will soon be under stress from greater power flows as we connect more electric vehicle charging points and more roof top-top photovoltaic panels. Here power electronics can play a vital role in realising greater power flow capacity from existing assets by managing voltage control better. This avoids the expense and disruption of digging up pavements and roads to replace cables. Here I am interested in power electronics to create fast-acting tap change transforms and to provide controlled meshing of radial networks using soft open points. This work has been in conjunction with MR and UK Power Networks with support from EPSRC.


Recent Ph.D. Completions

N. Bottrell, Ph.D., October 2013, “Small-signal Analysis of Active Loads and Large-signal Analysis of Faults in Inverter Interfaced Microgrid Applications”

M. Sokolov, Ph.D., June 2013, “Small-Signal Modelling of Maximum Power Point Tracking for Photovoltaic Systems”

M.M.C. Merlin, Ph.D., January 2012, “Hybrid Multi-Level HVDC Converter and Multi-Terminal DC Networks”

J.M. Bloemink, Ph.D., December 2012, “Distribution Level Power Electronics: Soft Open Points

Y. Pipelzadeh, Ph.D., July 2012, “Coordination of Damping Control in Transmission Networks with HVDC links”

S. Sudtharalingam, Ph.D., May 2012, “Micro Combined Heat and Power Units in the UK: Feasibility Assessment Using Real Time Pricing and Analysis of Related Policies”

P.R. Clemow, Ph.D., December 2011, “Smoothing wind farm output power through co-ordinated control and short term wind speed prediction”

C.A. Plet, Ph.D.,  November, 2011, “Fault Response of Inverter-based Distributed Generation”

K. Gandu, Ph.D., March 2011, “Power Processing for Electrostatic Microgenerators”

D.J. Rogers, Ph.D., February 2011, “Hybrid And Thin Power Electronics For Electrical Power Networks”

M.A. Reham, Ph.D., December 2010, “Investigation of FACTS device to improve power quality and reliability in distribution networks”

A.R. Ahmadi, Ph.D., November 2010, “Distribution Network Optimisation for an Active Network Management System”

S. Acha, Ph.D., October 2010, “Impacts of embedded technologies on optimal operation of energy service networks”

S.L. Payyala, Ph.D., December 2009, "Integration of Biomass Power Generation into Distribution Networks: A Techno-Economic perspective"

M. Brucoli, Ph.D., October 2008, “Fault behaviour and fault detection in islanded inverter-only microgrids”

C.-W. Tan, Ph.D., July 2008, "Analysis and Control of Building Integrated Photovoltaic Systems Incorporating Storage"

N. Pogaku, October 2006, “Analysis, Control and Testing of Inverter-Based Distributed Generation in Standalone and Grid-Connected Applications” Abstract 

J. Yao, July 2006, “Assessment of the Topology and Control of Three-Level Inverters for Low-Voltage Distributed Generation” Abstract 

P.D. Mitcheson, October 2005, “Analysis and Optimisation of Energy-Harvesting Micro-Generator Systems” Abstract

M. Prodanović, April 2004, "Quality and Control Aspects of Parallel Connected Inverters in Distributed Generation" Abstract 

C.A. Hernandez-Aramburo,  November 2002, “Investigation of Losses in Inverter-Driven Induction Machines” Abstract 

D.W. Sandells, September 2002, “Investigation into Chain Cell Converters and their use within Power Systems” Abstract 



Prof. Guangfu Tang, EPRI Electric Power Engineering Co. Ltd, State Grid Corporation of China (SGCC), HVDC Converter Technology and Control, 2013

Prof Xifang Wang, Xi'an Jiatong University, China, HVDC and Renewable Energy Integration, 2013 - 2016

Research Staff