Imperial College London

DrThibautJombart

Faculty of MedicineSchool of Public Health

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 3658t.jombart Website

 
 
//

Location

 

UG11Norfolk PlaceSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

157 results found

Evans B, Keiser O, Kaiser L, Jombart Tet al., 2023, Analysis of global routine immunisation coverage shows disruption and stagnation during the first two-years of the COVID-19 pandemic with tentative recovery in 2022, Vaccine: X, Vol: 15, ISSN: 2590-1362

Whilst it is now widely recognised that routine immunisation (RI) was disrupted by the COVID-19 pandemic in 2020, and further so in 2021, the extent of continued interruptions in 2022 and/or rebounds to previous trends remains unclear. We modelled country-specific RI trends using validated estimates of national coverage from the World Health Organisation and United Nation Children's Fund for 182 countries (accounting for > 97% of children globally), to project expected diphtheria, tetanus, and pertussis-containing vaccine first-dose (DTP1), third-dose (DTP3) and measles-containing vaccine first-dose (MCV1) coverage for 2020-2022 based on pre-pandemic trends (from 2000 to 2019). We provide further evidence of peak pandemic immunisation disruption in 2021, followed by tentative recovery in 2022. We report a 3.4% (95 %CI: [2.5%; 4.4%]) decline in global DTP3 coverage in 2021 compared to 2000-2019 trends, from an expected 89.8% to reported 86.4%. This coverage gap reduced to a 2.7% (95 %CI: [1.8%; 3.6%]) decline in 2022, with reported coverage rising to 87.2%. Similar results were seen for DTP1 and MCV1. Whilst partial rebounds are encouraging, global coverage decline translates to a 17-year setback in RI to 2005 levels, and the majority of countries retain coverage at or lower than pre-pandemic levels. The Americas, Africa, and Asia were the most impacted regions; and low- and middle-income countries the most affected income groups. The number of annual Zero Dose (ZD) children - indicating those receiving no immunisations - increased from 12.1 million (M) globally in 2019 to a peak of 16.7 M in 2021, then reduced to 13.1 M in 2022. Overall, we estimate an excess of 8.8 M ZD children cumulatively in 2020-2022 compared to pre-pandemic levels. This work can be used as an objective baseline to inform future interventions to prioritise and target interventions, and facilitate catch-up of growing populations of under- and un-immunised ch

Journal article

Qian GY, Edmunds WJ, Bausch DG, Jombart Tet al., 2023, A mathematical model of Marburg virus disease outbreaks and the potential role of vaccination in control., BMC Med, Vol: 21

BACKGROUND: Marburg virus disease is an acute haemorrhagic fever caused by Marburg virus. Marburg virus is zoonotic, maintained in nature in Egyptian fruit bats, with occasional spillover infections into humans and nonhuman primates. Although rare, sporadic cases and outbreaks occur in Africa, usually associated with exposure to bats in mines or caves, and sometimes with secondary human-to-human transmission. Outbreaks outside of Africa have also occurred due to importation of infected monkeys. Although all previous Marburg virus disease outbreaks have been brought under control without vaccination, there is nevertheless the potential for large outbreaks when implementation of public health measures is not possible or breaks down. Vaccines could thus be an important additional tool, and development of several candidate vaccines is under way. METHODS: We developed a branching process model of Marburg virus transmission and investigated the potential effects of several prophylactic and reactive vaccination strategies in settings driven primarily by multiple spillover events as well as human-to-human transmission. Linelist data from the 15 outbreaks up until 2022, as well as an Approximate Bayesian Computational framework, were used to inform the model parameters. RESULTS: Our results show a low basic reproduction number which varied across outbreaks, from 0.5 [95% CI 0.05-1.8] to 1.2 [95% CI 1.0-1.9] but a high case fatality ratio. Of six vaccination strategies explored, the two prophylactic strategies (mass and targeted vaccination of high-risk groups), as well as a combination of ring and targeted vaccination, were generally most effective, with a probability of potential outbreaks being terminated within 1 year of 0.90 (95% CI 0.90-0.91), 0.89 (95% CI 0.88-0.90), and 0.88 (95% CI 0.87-0.89) compared with 0.68 (0.67-0.69) for no vaccination, especially if the outbreak is driven by zoonotic spillovers and the vaccination campaign initiated as soon as possible after o

Journal article

Zeng W, Samaha H, Yao M, Ahuka-Mundeke S, Wilkinson T, Jombart T, Baabo D, Lokonga J-P, Yuma S, Mobula-Shufelt Let al., 2023, The cost of public health interventions to respond to the 10th Ebola outbreak in the Democratic Republic of the Congo, BMJ GLOBAL HEALTH, Vol: 8, ISSN: 2059-7908

Journal article

Geismar C, Nguyen V, Fragaszy E, Shrotri M, Navaratnam AMD, Beale S, Byrne TE, Fong WLE, Yavlinsky A, Kovar J, Hoskins S, Braithwaite I, Aldridge RW, Hayward AC, White PJ, Jombart T, Cori Aet al., 2023, Bayesian reconstruction of SARS-CoV-2 transmissions highlights substantial proportion of negative serial intervals, Epidemics: the journal of infectious disease dynamics, Vol: 44, ISSN: 1755-4365

BACKGROUND: The serial interval is a key epidemiological measure that quantifies the time between the onset of symptoms in an infector-infectee pair. It indicates how quickly new generations of cases appear, thus informing on the speed of an epidemic. Estimating the serial interval requires to identify pairs of infectors and infectees. Yet, most studies fail to assess the direction of transmission between cases and assume that the order of infections - and thus transmissions - strictly follows the order of symptom onsets, thereby imposing serial intervals to be positive. Because of the long and highly variable incubation period of SARS-CoV-2, this may not always be true (i.e an infectee may show symptoms before their infector) and negative serial intervals may occur. This study aims to estimate the serial interval of different SARS-CoV-2 variants whilst accounting for negative serial intervals. METHODS: This analysis included 5 842 symptomatic individuals with confirmed SARS-CoV-2 infection amongst 2 579 households from September 2020 to August 2022 across England & Wales. We used a Bayesian framework to infer who infected whom by exploring all transmission trees compatible with the observed dates of symptoms, based on a wide range of incubation period and generation time distributions compatible with estimates reported in the literature. Serial intervals were derived from the reconstructed transmission pairs, stratified by variants. RESULTS: We estimated that 22% (95% credible interval (CrI) 8-32%) of serial interval values are negative across all VOC. The mean serial interval was shortest for Omicron BA5 (2.02 days, 1.26-2.84) and longest for Alpha (3.37 days, 2.52-4.04). CONCLUSIONS: This study highlights the large proportion of negative serial intervals across SARS-CoV-2 variants. Because the serial interval is widely used to estimate transmissibility and forecast cases, these results may have critical implications for epidemic control.

Journal article

Qian GY, Jombart T, Edmunds WJ, 2023, Assessing the feasibility of Phase 3 vaccine trials against Marburg Virus Disease: A modelling study, VACCINE: X, Vol: 14, ISSN: 2590-1362

Journal article

Geismar C, Nguyen V, Fragaszy E, Shrotri M, Navaratnam AMD, Beale S, Byrne TE, Fong WLE, Yavlinsky A, Kovar J, Braithwaite I, Aldridge RW, Hayward AC, White P, Jombart T, Cori Aet al., 2022, Bayesian reconstruction of household transmissions to infer the serial interval of COVID-19 by variants of concern: analysis from a prospective community cohort study (Virus Watch), LANCET, Vol: 400, Pages: 40-40, ISSN: 0140-6736

Journal article

Barnard RC, Davies NG, Centre for Mathematical Modelling of Infectious Diseases COVID-19 working group, Jit M, Edmunds WJet al., 2022, Modelling the medium-term dynamics of SARS-CoV-2 transmission in England in the Omicron era., Nat Commun, Vol: 13

England has experienced a heavy burden of COVID-19, with multiple waves of SARS-CoV-2 transmission since early 2020 and high infection levels following the emergence and spread of Omicron variants since late 2021. In response to rising Omicron cases, booster vaccinations were accelerated and offered to all adults in England. Using a model fitted to more than 2 years of epidemiological data, we project potential dynamics of SARS-CoV-2 infections, hospital admissions and deaths in England to December 2022. We consider key uncertainties including future behavioural change and waning immunity and assess the effectiveness of booster vaccinations in mitigating SARS-CoV-2 disease burden between October 2021 and December 2022. If no new variants emerge, SARS-CoV-2 transmission is expected to decline, with low levels remaining in the coming months. The extent to which projected SARS-CoV-2 transmission resurges later in 2022 depends largely on assumptions around waning immunity and to some extent, behaviour, and seasonality.

Journal article

Evans B, Jombart T, 2022, Worldwide routine immunisation coverage regressed during the first year of the COVID-19 pandemic, VACCINE, Vol: 40, Pages: 3531-3535, ISSN: 0264-410X

Journal article

Waites W, Pearson CAB, Gaskell KM, House T, Pellis L, Johnson M, Gould V, Hunt A, Stone NRH, Kasstan B, Chantler T, Lal S, Roberts CH, Goldblatt D, CMMID COVID-19 Working Group, Marks M, Eggo RMet al., 2022, Transmission dynamics of SARS-CoV-2 in a strictly-Orthodox Jewish community in the UK, Scientific Reports, Vol: 12, ISSN: 2045-2322

Some social settings such as households and workplaces, have been identified as high risk for SARS-CoV-2 transmission. Identifying and quantifying the importance of these settings is critical for designing interventions. A tightly-knit religious community in the UK experienced a very large COVID-19 epidemic in 2020, reaching 64.3% seroprevalence within 10 months, and we surveyed this community both for serological status and individual-level attendance at particular settings. Using these data, and a network model of people and places represented as a stochastic graph rewriting system, we estimated the relative contribution of transmission in households, schools and religious institutions to the epidemic, and the relative risk of infection in each of these settings. All congregate settings were important for transmission, with some such as primary schools and places of worship having a higher share of transmission than others. We found that the model needed a higher general-community transmission rate for women (3.3-fold), and lower susceptibility to infection in children to recreate the observed serological data. The precise share of transmission in each place was related to assumptions about the internal structure of those places. Identification of key settings of transmission can allow public health interventions to be targeted at these locations.

Journal article

Jarvis C, Gimma A, Finger F, Morris TP, Thompson JA, de Waroux OLP, Edmunds WJ, Funk S, Jombart Tet al., 2022, Measuring the unknown: An estimator and simulation study for assessing case reporting during epidemics, PLOS COMPUTATIONAL BIOLOGY, Vol: 18, ISSN: 1553-734X

Journal article

Gimma A, Munday JD, Wong KLM, Coletti P, van Zandvoort K, Prem K, CMMID COVID-19 working group, Klepac P, Rubin GJ, Funk S, Edmunds WJ, Jarvis CIet al., 2022, Changes in social contacts in England during the COVID-19 pandemic between March 2020 and March 2021 as measured by the CoMix survey: A repeated cross-sectional study., PLoS Med, Vol: 19

BACKGROUND: During the Coronavirus Disease 2019 (COVID-19) pandemic, the United Kingdom government imposed public health policies in England to reduce social contacts in hopes of curbing virus transmission. We conducted a repeated cross-sectional study to measure contact patterns weekly from March 2020 to March 2021 to estimate the impact of these policies, covering 3 national lockdowns interspersed by periods of less restrictive policies. METHODS AND FINDINGS: The repeated cross-sectional survey data were collected using online surveys of representative samples of the UK population by age and gender. Survey participants were recruited by the online market research company Ipsos MORI through internet-based banner and social media ads and email campaigns. The participant data used for this analysis are restricted to those who reported living in England. We calculated the mean daily contacts reported using a (clustered) bootstrap and fitted a censored negative binomial model to estimate age-stratified contact matrices and estimate proportional changes to the basic reproduction number under controlled conditions using the change in contacts as a scaling factor. To put the findings in perspective, we discuss contact rates recorded throughout the year in terms of previously recorded rates from the POLYMOD study social contact study. The survey recorded 101,350 observations from 19,914 participants who reported 466,710 contacts over 53 weeks. We observed changes in social contact patterns in England over time and by participants' age, personal risk factors, and perception of risk. The mean reported contacts for adults 18 to 59 years old ranged between 2.39 (95% confidence interval [CI] 2.20 to 2.60) contacts and 4.93 (95% CI 4.65 to 5.19) contacts during the study period. The mean contacts for school-age children (5 to 17 years old) ranged from 3.07 (95% CI 2.89 to 3.27) to 15.11 (95% CI 13.87 to 16.41). This demonstrates a sustained decrease in social contacts compared t

Journal article

Meakin S, Abbott S, Bosse N, Munday J, Gruson H, Hellewell J, Sherratt K, CMMID COVID-19 Working Group, Funk Set al., 2022, Comparative assessment of methods for short-term forecasts of COVID-19 hospital admissions in England at the local level., BMC Med, Vol: 20

BACKGROUND: Forecasting healthcare demand is essential in epidemic settings, both to inform situational awareness and facilitate resource planning. Ideally, forecasts should be robust across time and locations. During the COVID-19 pandemic in England, it is an ongoing concern that demand for hospital care for COVID-19 patients in England will exceed available resources. METHODS: We made weekly forecasts of daily COVID-19 hospital admissions for National Health Service (NHS) Trusts in England between August 2020 and April 2021 using three disease-agnostic forecasting models: a mean ensemble of autoregressive time series models, a linear regression model with 7-day-lagged local cases as a predictor, and a scaled convolution of local cases and a delay distribution. We compared their point and probabilistic accuracy to a mean-ensemble of them all and to a simple baseline model of no change from the last day of admissions. We measured predictive performance using the weighted interval score (WIS) and considered how this changed in different scenarios (the length of the predictive horizon, the date on which the forecast was made, and by location), as well as how much admissions forecasts improved when future cases were known. RESULTS: All models outperformed the baseline in the majority of scenarios. Forecasting accuracy varied by forecast date and location, depending on the trajectory of the outbreak, and all individual models had instances where they were the top- or bottom-ranked model. Forecasts produced by the mean-ensemble were both the most accurate and most consistently accurate forecasts amongst all the models considered. Forecasting accuracy was improved when using future observed, rather than forecast, cases, especially at longer forecast horizons. CONCLUSIONS: Assuming no change in current admissions is rarely better than including at least a trend. Using confirmed COVID-19 cases as a predictor can improve admissions forecasts in some scenarios, but this is va

Journal article

Lindsey BB, Villabona-Arenas CJ, Campbell F, Keeley AJ, Parker MD, Shah DR, Parsons H, Zhang P, Kakkar N, Gallis M, Foulkes BH, Wolverson P, Louka SF, Christou S, State A, Johnson K, Raza M, Hsu S, Jombart T, Cori A, Evans CM, Partridge DG, Atkins KE, Hue S, de Silva TIet al., 2022, Characterising within-hospital SARS-CoV-2 transmission events using epidemiological and viral genomic data across two pandemic waves (vol 13, pg 1013, 2022), NATURE COMMUNICATIONS, Vol: 13

Journal article

Finch E, Lowe R, Fischinger S, de St Aubin M, Siddiqui SM, Dayal D, Loesche MA, Rhee J, Beger S, Hu Y, Gluck MJ, Mormann B, Hasdianda MA, Musk ER, Alter G, Menon AS, Nilles EJ, Kucharski AJ, CMMID COVID-19 working group and the SpaceX COVID-19 Cohort Collaborativeet al., 2022, SARS-CoV-2 antibodies protect against reinfection for at least 6 months in a multicentre seroepidemiological workplace cohort., PLoS Biol, Vol: 20

Identifying the potential for SARS-CoV-2 reinfection is crucial for understanding possible long-term epidemic dynamics. We analysed longitudinal PCR and serological testing data from a prospective cohort of 4,411 United States employees in 4 states between April 2020 and February 2021. We conducted a multivariable logistic regression investigating the association between baseline serological status and subsequent PCR test result in order to calculate an odds ratio for reinfection. We estimated an odds ratio for reinfection ranging from 0.14 (95% CI: 0.019 to 0.63) to 0.28 (95% CI: 0.05 to 1.1), implying that the presence of SARS-CoV-2 antibodies at baseline is associated with around 72% to 86% reduced odds of a subsequent PCR positive test based on our point estimates. This suggests that primary infection with SARS-CoV-2 provides protection against reinfection in the majority of individuals, at least over a 6-month time period. We also highlight 2 major sources of bias and uncertainty to be considered when estimating the relative risk of reinfection, confounders and the choice of baseline time point, and show how to account for both in reinfection analysis.

Journal article

Nightingale ES, Brady OJ, Yakob L, Gimma A, Jit M, Jarvis CI, Waterlow NR, Procter SR, Auzenbergs M, Tully DC, Simons D, Endo A, Hellewell J, Lowe R, Foss AM, van Zandvoort K, Pearson CAB, Showering A, Klepac P, Medley G, Quilty BJ, Diamond C, Edmunds WJ, Rosello A, Barnard RC, Abbas K, Sherratt K, Williams J, Meakin SR, Quaife M, Russell TW, Villabona-Arenas CJ, Prem K, Sun FY, Davies NG, Eggo RM, Knight GM, Kucharski AJ, Sandmann FG, Funk S, Gore-Langton GR, Flasche S, Jombart T, Gibbs HP, Liu Y, Brady O, Bosse NI, Chan YWD, Abbott S, Clifford S, Atkins KE, Munday JDet al., 2021, The importance of saturating density dependence for population-level predictions of SARS-CoV-2 resurgence compared with density-independent or linearly density-dependent models, England, 23 March to 31 July 2020, Eurosurveillance, Vol: 26, ISSN: 1025-496X

Background: Population-level mathematical models of outbreaks typically assume that disease transmission is not impacted by population density (‘frequency-dependent’) or that it increases linearly with density (‘density-dependent’). Aim: We sought evidence for the role of population density in SARS-CoV-2 transmission. Methods: Using COVID-19-associated mortality data from England, we fitted multiple functional forms linking density with transmission. We projected forwards beyond lockdown to ascertain the consequences of different functional forms on infection resurgence. Results: COVID-19-associated mortality data from England show evidence of increasing with population density until a saturating level, after adjusting for local age distribution, deprivation, proportion of ethnic minority population and proportion of key workers among the working population. Projections from a mathematical model that accounts for this observation deviate markedly from the current status quo for SARS-CoV-2 models which either assume linearity between density and transmission (30% of models) or no relationship at all (70%). Respectively, these classical model structures over- and underestimate the delay in infection resurgence following the release of lockdown. Conclusion: Identifying saturation points for given populations and including transmission terms that account for this feature will improve model accuracy and utility for the current and future pandemics.

Journal article

Liu Y, Morgenstern C, Kelly J, Lowe R, Jit Met al., 2021, The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territories, BMC Medicine, Vol: 19, Pages: 1-12, ISSN: 1741-7015

BackgroundNon-pharmaceutical interventions (NPIs) are used to reduce transmission of SARS coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). However, empirical evidence of the effectiveness of specific NPIs has been inconsistent. We assessed the effectiveness of NPIs around internal containment and closure, international travel restrictions, economic measures, and health system actions on SARS-CoV-2 transmission in 130 countries and territories.MethodsWe used panel (longitudinal) regression to estimate the effectiveness of 13 categories of NPIs in reducing SARS-CoV-2 transmission using data from January to June 2020. First, we examined the temporal association between NPIs using hierarchical cluster analyses. We then regressed the time-varying reproduction number (Rt) of COVID-19 against different NPIs. We examined different model specifications to account for the temporal lag between NPIs and changes in Rt, levels of NPI intensity, time-varying changes in NPI effect, and variable selection criteria. Results were interpreted taking into account both the range of model specifications and temporal clustering of NPIs.ResultsThere was strong evidence for an association between two NPIs (school closure, internal movement restrictions) and reduced Rt. Another three NPIs (workplace closure, income support, and debt/contract relief) had strong evidence of effectiveness when ignoring their level of intensity, while two NPIs (public events cancellation, restriction on gatherings) had strong evidence of their effectiveness only when evaluating their implementation at maximum capacity (e.g. restrictions on 1000+ people gathering were not effective, restrictions on < 10 people gathering were). Evidence about the effectiveness of the remaining NPIs (stay-at-home requirements, public information campaigns, public transport closure, international travel controls, testing, contact tracing) was inconsistent and inconclusive. We found temporal cluste

Journal article

Sera F, Armstrong B, Abbott S, Meakin S, O'Reilly K, von Borries R, Schneider R, Royé D, Hashizume M, Pascal M, Tobias A, Vicedo-Cabrera AM, MCC Collaborative Research Network, CMMID COVID-19 Working Group, Gasparrini A, Lowe Ret al., 2021, A cross-sectional analysis of meteorological factors and SARS-CoV-2 transmission in 409 cities across 26 countries., Nat Commun, Vol: 12

There is conflicting evidence on the influence of weather on COVID-19 transmission. Our aim is to estimate weather-dependent signatures in the early phase of the pandemic, while controlling for socio-economic factors and non-pharmaceutical interventions. We identify a modest non-linear association between mean temperature and the effective reproduction number (Re) in 409 cities in 26 countries, with a decrease of 0.087 (95% CI: 0.025; 0.148) for a 10 °C increase. Early interventions have a greater effect on Re with a decrease of 0.285 (95% CI 0.223; 0.347) for a 5th - 95th percentile increase in the government response index. The variation in the effective reproduction number explained by government interventions is 6 times greater than for mean temperature. We find little evidence of meteorological conditions having influenced the early stages of local epidemics and conclude that population behaviour and government interventions are more important drivers of transmission.

Journal article

Davis EL, Lucas TCD, Borlase A, Pollington TM, Abbott S, Ayabina D, Crellen T, Hellewell J, Pi L, Medley GF, Hollingsworth TD, Klepac Pet al., 2021, Contact tracing is an imperfect tool for controlling COVID-19 transmission and relies on population adherence, NATURE COMMUNICATIONS, Vol: 12

Journal article

Munday JD, Jarvis CI, Gimma A, Wong KLM, van Zandvoort K, CMMID COVID-19 Working Group, Funk S, Edmunds WJet al., 2021, Estimating the impact of reopening schools on the reproduction number of SARS-CoV-2 in England, using weekly contact survey data., BMC Med, Vol: 19

BACKGROUND: Schools were closed in England on 4 January 2021 as part of increased national restrictions to curb transmission of SARS-CoV-2. The UK government reopened schools on 8 March. Although there was evidence of lower individual-level transmission risk amongst children compared to adults, the combined effects of this with increased contact rates in school settings and the resulting impact on the overall transmission rate in the population were not clear. METHODS: We measured social contacts of > 5000 participants weekly from March 2020, including periods when schools were both open and closed, amongst other restrictions. We combined these data with estimates of the susceptibility and infectiousness of children compared with adults to estimate the impact of reopening schools on the reproduction number. RESULTS: Our analysis indicates that reopening all schools under the same measures as previous periods that combined lockdown with face-to-face schooling would be likely to increase the reproduction number substantially. Assuming a baseline of 0.8, we estimated a likely increase to between 1.0 and 1.5 with the reopening of all schools or to between 0.9 and 1.2 reopening primary or secondary schools alone. CONCLUSION: Our results suggest that reopening schools would likely halt the fall in cases observed between January and March 2021 and would risk a return to rising infections, but these estimates relied heavily on the latest estimates or reproduction number and the validity of the susceptibility and infectiousness profiles we used at the time of reopening.

Journal article

Clifford S, Quilty BJ, Russell TW, Liu Y, Chan Y-WD, Pearson CAB, Eggo RM, Endo A, CMMID COVID-19 Working Group, Flasche S, Edmunds WJ, Centre for Mathematical Modelling of Infectious Diseases CMMID COVID-19 Working Groupet al., 2021, Strategies to reduce the risk of SARS-CoV-2 importation from international travellers: modelling estimations for the United Kingdom, July 2020., Euro Surveill, Vol: 26

BackgroundTo mitigate SARS-CoV-2 transmission risks from international air travellers, many countries implemented a combination of up to 14 days of self-quarantine upon arrival plus PCR testing in the early stages of the COVID-19 pandemic in 2020.AimTo assess the effectiveness of quarantine and testing of international travellers to reduce risk of onward SARS-CoV-2 transmission into a destination country in the pre-COVID-19 vaccination era.MethodsWe used a simulation model of air travellers arriving in the United Kingdom from the European Union or the United States, incorporating timing of infection stages while varying quarantine duration and timing and number of PCR tests.ResultsQuarantine upon arrival with a PCR test on day 7 plus a 1-day delay for results can reduce the number of infectious arriving travellers released into the community by a median 94% (95% uncertainty interval (UI): 89-98) compared with a no quarantine/no test scenario. This reduction is similar to that achieved by a 14-day quarantine period (median > 99%; 95% UI: 98-100). Even shorter quarantine periods can prevent a substantial amount of transmission; all strategies in which travellers spend at least 5 days (mean incubation period) in quarantine and have at least one negative test before release are highly effective (median reduction 89%; 95% UI: 83-95)).ConclusionThe effect of different screening strategies impacts asymptomatic and symptomatic individuals differently. The choice of an optimal quarantine and testing strategy for unvaccinated air travellers may vary based on the number of possible imported infections relative to domestic incidence.

Journal article

Procter SR, Abbas K, Flasche S, Griffiths U, Hagedorn B, O'Reilly KM, CMMID COVID-19 Working Group, Jit Met al., 2021, SARS-CoV-2 infection risk during delivery of childhood vaccination campaigns: a modelling study., BMC Med, Vol: 19

BACKGROUND: The COVID-19 pandemic has disrupted the delivery of immunisation services globally. Many countries have postponed vaccination campaigns out of concern about infection risks to the staff delivering vaccination, the children being vaccinated, and their families. The World Health Organization recommends considering both the benefit of preventive campaigns and the risk of SARS-CoV-2 transmission when making decisions about campaigns during COVID-19 outbreaks, but there has been little quantification of the risks. METHODS: We modelled excess SARS-CoV-2 infection risk to vaccinators, vaccinees, and their caregivers resulting from vaccination campaigns delivered during a COVID-19 epidemic. Our model used population age structure and contact patterns from three exemplar countries (Burkina Faso, Ethiopia, and Brazil). It combined an existing compartmental transmission model of an underlying COVID-19 epidemic with a Reed-Frost model of SARS-CoV-2 infection risk to vaccinators and vaccinees. We explored how excess risk depends on key parameters governing SARS-CoV-2 transmissibility, and aspects of campaign delivery such as campaign duration, number of vaccinations, and effectiveness of personal protective equipment (PPE) and symptomatic screening. RESULTS: Infection risks differ considerably depending on the circumstances in which vaccination campaigns are conducted. A campaign conducted at the peak of a SARS-CoV-2 epidemic with high prevalence and without special infection mitigation measures could increase absolute infection risk by 32 to 45% for vaccinators and 0.3 to 0.5% for vaccinees and caregivers. However, these risks could be reduced to 3.6 to 5.3% and 0.1 to 0.2% respectively by use of PPE that reduces transmission by 90% (as might be achieved with N95 respirators or high-quality surgical masks) and symptomatic screening. CONCLUSIONS: SARS-CoV-2 infection risks to vaccinators, vaccinees, and caregivers during vaccination campaigns can be greatly reduced b

Journal article

Brooks-Pollock E, Danon L, Jombart T, Pellis Let al., 2021, Modelling that shaped the early COVID-19 pandemic response in the UK, PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, Vol: 376, ISSN: 0962-8436

Journal article

Jombart T, Ghozzi S, Schumacher D, Taylor TJ, Leclerc QJ, Jit M, Flasche S, Greaves F, Ward T, Eggo RM, Nightingale E, Meakin S, Brady OJ, Medley GF, Hohle M, Edmunds WJet al., 2021, Real-time monitoring of COVID-19 dynamics using automated trend fitting and anomaly detection, PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, Vol: 376, ISSN: 0962-8436

Journal article

Sandmann FG, Davies NG, Vassall A, Edmunds WJ, Jit M, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 working groupet al., 2021, The potential health and economic value of SARS-CoV-2 vaccination alongside physical distancing in the UK: a transmission model-based future scenario analysis and economic evaluation., Lancet Infect Dis, Vol: 21, Pages: 962-974

BACKGROUND: In response to the COVID-19 pandemic, the UK first adopted physical distancing measures in March, 2020. Vaccines against SARS-CoV-2 became available in December, 2020. We explored the health and economic value of introducing SARS-CoV-2 immunisation alongside physical distancing in the UK to gain insights about possible future scenarios in a post-vaccination era. METHODS: We used an age-structured dynamic transmission and economic model to explore different scenarios of UK mass immunisation programmes over 10 years. We compared vaccinating 75% of individuals aged 15 years or older (and annually revaccinating 50% of individuals aged 15-64 years and 75% of individuals aged 65 years or older) to no vaccination. We assumed either 50% vaccine efficacy against disease and 45-week protection (worst-case scenario) or 95% vaccine efficacy against infection and 3-year protection (best-case scenario). Natural immunity was assumed to wane within 45 weeks. We also explored the additional impact of physical distancing on vaccination by assuming either an initial lockdown followed by voluntary physical distancing, or an initial lockdown followed by increased physical distancing mandated above a certain threshold of incident daily infections. We considered benefits in terms of quality-adjusted life-years (QALYs) and costs, both to the health-care payer and the national economy. We discounted future costs and QALYs at 3·5% annually and assumed a monetary value per QALY of £20 000 and a conservative long-run cost per vaccine dose of £15. We explored and varied these parameters in sensitivity analyses. We expressed the health and economic benefits of each scenario with the net monetary value: QALYs × (monetary value per QALY) - costs. FINDINGS: Without the initial lockdown, vaccination, and increased physical distancing, we estimated 148·0 million (95% uncertainty interval 48·5-198·8) COVID-19

Journal article

Campbell F, Archer B, Laurenson-Schafer H, Jinnai Y, Konings F, Batra N, Pavlin B, Vandemaele K, Van Kerkhove MD, Jombart T, Morgan O, de Waroux OLPet al., 2021, Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021, EUROSURVEILLANCE, Vol: 26, ISSN: 1025-496X

Journal article

Leclerc QJ, Fuller NM, Keogh RH, Diaz-Ordaz K, Sekula R, Semple MG, ISARIC4C Investigators, CMMID COVID-19 Working Group, Atkins KE, Procter SR, Knight GMet al., 2021, Importance of patient bed pathways and length of stay differences in predicting COVID-19 hospital bed occupancy in England., BMC Health Services Research, Vol: 21, Pages: 1-15, ISSN: 1472-6963

BACKGROUND: Predicting bed occupancy for hospitalised patients with COVID-19 requires understanding of length of stay (LoS) in particular bed types. LoS can vary depending on the patient's "bed pathway" - the sequence of transfers of individual patients between bed types during a hospital stay. In this study, we characterise these pathways, and their impact on predicted hospital bed occupancy. METHODS: We obtained data from University College Hospital (UCH) and the ISARIC4C COVID-19 Clinical Information Network (CO-CIN) on hospitalised patients with COVID-19 who required care in general ward or critical care (CC) beds to determine possible bed pathways and LoS. We developed a discrete-time model to examine the implications of using either bed pathways or only average LoS by bed type to forecast bed occupancy. We compared model-predicted bed occupancy to publicly available bed occupancy data on COVID-19 in England between March and August 2020. RESULTS: In both the UCH and CO-CIN datasets, 82% of hospitalised patients with COVID-19 only received care in general ward beds. We identified four other bed pathways, present in both datasets: "Ward, CC, Ward", "Ward, CC", "CC" and "CC, Ward". Mean LoS varied by bed type, pathway, and dataset, between 1.78 and 13.53 days. For UCH, we found that using bed pathways improved the accuracy of bed occupancy predictions, while only using an average LoS for each bed type underestimated true bed occupancy. However, using the CO-CIN LoS dataset we were not able to replicate past data on bed occupancy in England, suggesting regional LoS heterogeneities. CONCLUSIONS: We identified five bed pathways, with substantial variation in LoS by bed type, pathway, and geography. This might be caused by local differences in patient characteristics, clinical care strategies, or resource availability, and suggests that national LoS averages may not be appropriate for local forecasts of bed occ

Journal article

Hodgson D, Flasche S, Jit M, Kucharski AJet al., 2021, The potential for vaccination-induced herd immunity against the SARS-CoV-2 B.1.1.7 variant, Eurosurveillance, Vol: 26, Pages: 2-8, ISSN: 1560-7917

Initial reports of vaccine effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease (COVID-19), have suggested a substantial reduction of the risk of infection [1]. Nevertheless, with the emergence of more transmissible variants such as B.1.1.7 [2], how large-scale immunisation programmes against SARS-CoV-2 will perform is currently unclear. This study assesses the potential of COVID-19 vaccination to generate herd immunity and takes into account vaccine effectiveness, naturally-acquired immunity and achievable vaccination coverage (depending on the population age structure), as well as two transmissibility scenarios ((i) with pre-B.1.1.7, and (ii) with exclusively B.1.1.7 variants).

Journal article

Davies NG, Jarvis CI, CMMID COVID-19 Working Group, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RHet al., 2021, Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7., Nature, Vol: 593, Pages: 270-274

SARS-CoV-2 lineage B.1.1.7, a variant that was first detected in the UK in September 20201, has spread to multiple countries worldwide. Several studies have established that B.1.1.7 is more transmissible than pre-existing variants, but have not identified whether it leads to any change in disease severity2. Here we analyse a dataset that links 2,245,263 positive SARS-CoV-2 community tests and 17,452 deaths associated with COVID-19 in England from 1 November 2020 to 14 February 2021. For 1,146,534 (51%) of these tests, the presence or absence of B.1.1.7 can be identified because mutations in this lineage prevent PCR amplification of the spike (S) gene target (known as S gene target failure (SGTF)1). On the basis of 4,945 deaths with known SGTF status, we estimate that the hazard of death associated with SGTF is 55% (95% confidence interval, 39-72%) higher than in cases without SGTF after adjustment for age, sex, ethnicity, deprivation, residence in a care home, the local authority of residence and test date. This corresponds to the absolute risk of death for a 55-69-year-old man increasing from 0.6% to 0.9% (95% confidence interval, 0.8-1.0%) within 28 days of a positive test in the community. Correcting for misclassification of SGTF and missingness in SGTF status, we estimate that the hazard of death associated with B.1.1.7 is 61% (42-82%) higher than with pre-existing variants. Our analysis suggests that B.1.1.7 is not only more transmissible than pre-existing SARS-CoV-2 variants, but may also cause more severe illness.

Journal article

McCarthy CV, Sandmann FG, CMMID COVID-19 Working Group, Jit Met al., 2021, Global and national estimates of the number of healthcare workers at high risk of SARS-CoV-2 infection., J Hosp Infect, Vol: 111, Pages: 205-207

Journal article

Hellewell J, Russell TW, Beale R, Kelly G, Houlihan C, Nastouli E, Kucharski AJet al., 2021, Estimating the effectiveness of routine asymptomatic PCR testing at different frequencies for the detection of SARS-CoV-2 infections, BMC MEDICINE, Vol: 19, ISSN: 1741-7015

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00606825&limit=30&person=true