Imperial College London

DrTonyNolan

Faculty of Natural SciencesDepartment of Life Sciences

Honorary Senior Lecturer
 
 
 
//

Contact

 

t.nolan

 
 
//

Assistant

 

Mrs Lucy Collyns +44 (0)20 7594 5395

 
//

Location

 

Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

76 results found

Quinlan MM, Birungi J, Coulibaly MB, Diabate A, Facchinelli L, Mukabana WR, Mutunga JM, Nolan T, Raymond P, Traore SFet al., 2018, Containment studies of transgenic mosquitoes in disease endemic countries: the broad concept of facilities readiness, Vector-Borne and Zoonotic Diseases, Vol: 18, Pages: 14-20, ISSN: 1530-3667

Genetic strategies for large scale pest or vector control using modified insects are not yet operational in Africa, and currently rely on import of the modified strains to begin preliminary, contained studies. Early involvement of research teams from participating countries is crucial to evaluate candidate field interventions. Following the recommended phased approach for novel strategies, evaluation should begin with studies in containment facilities. Experiences to prepare facilities and build international teams for research on transgenic mosquitoes revealed some important organizing themes underlying the concept of “facilities readiness,” or the point at which studies in containment may proceed, in sub-Saharan African settings. First, “compliance” for research with novel or non-native living organisms was defined as the fulfillment of all legislative and regulatory requirements. This is not limited to regulations regarding use of transgenic organisms. Second, the concept of “colony utility” was related to the characteristics of laboratory colonies being produced so that results of studies may be validated across time, sites, and strains or technologies; so that the appropriate candidate strains are moved forward toward field studies. Third, the importance of achieving “defensible science” was recognized, including that study conclusions can be traced back to evidence, covering the concerns of various stakeholders over the long term. This, combined with good stewardship of resources and appropriate funding, covers a diverse set of criteria for declaring when “facilities readiness” has been attained. It is proposed that, despite the additional demands on time and resources, only with the balance of and rigorous achievement of each of these organizing themes can collaborative research into novel strategies in vector or pest control reliably progress past initial containment studies.

Journal article

Nolan T, 2017, How to handle gene drives in arthropods?, Pathog Glob Health, Vol: 111, Pages: 403-403

Journal article

Simoes ML, Dong Y, Hammond AM, Nolan T, Crisanti A, Dimopoulos Get al., 2017, ENGINEERED <i>ANOPHELES GAMBIAE</i> IMMUNITY TO <i>PLASMODIUM</i> INFECTION, 65th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 444-444, ISSN: 0002-9637

Conference paper

Lombardo F, Salvemini M, Fiorillo C, Nolan T, Zwiebel LJ, Ribeiro JM, Arca Bet al., 2017, Deciphering the olfactory repertoire of the tiger mosquito Aedes albopictus, BMC Genomics, Vol: 18, ISSN: 1471-2164

BackgroundThe Asian tiger mosquito Aedes albopictus is a highly invasive species and competent vector of several arboviruses (e.g. dengue, chikungunya, Zika) and parasites (e.g. dirofilaria) of public health importance. Compared to other mosquito species, Ae. albopictus females exhibit a generalist host seeking as well as a very aggressive biting behaviour that are responsible for its high degree of nuisance. Several complex mosquito behaviours such as host seeking, feeding, mating or oviposition rely on olfactory stimuli that target a range of sensory neurons localized mainly on specialized head appendages such as antennae, maxillary palps and the mouthparts.ResultsWith the aim to describe the Ae. albopictus olfactory repertoire we have used RNA-seq to reveal the transcriptome profiles of female antennae and maxillary palps. Male heads and whole female bodies were employed as reference for differential expression analysis. The relative transcript abundance within each tissue (TPM, transcripts per kilobase per million) and the pairwise differential abundance in the different tissues (fold change values and false discovery rates) were evaluated. Contigs upregulated in the antennae (620) and maxillary palps (268) were identified and relative GO and PFAM enrichment profiles analysed. Chemosensory genes were described: overall, 77 odorant binding proteins (OBP), 82 odorant receptors (OR), 60 ionotropic receptors (IR) and 30 gustatory receptors (GR) were identified by comparative genomics and transcriptomics. In addition, orthologs of genes expressed in the female/male maxillary palps and/or antennae and involved in thermosensation (e.g. pyrexia and arrestin1), mechanosensation (e.g. piezo and painless) and neuromodulation were classified.ConclusionsWe provide here the first detailed transcriptome of the main Ae. albopictus sensory appendages, i.e. antennae and maxillary palps. A deeper knowledge of the olfactory repertoire of the tiger mosquito will help to better under

Journal article

Hammond AM, Kyrou K, Bruttini M, North A, Galizi R, Karlsson X, Kranjc N, Carpi FM, D'Aurizio R, Crisanti A, Nolan Tet al., 2017, The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito, PLoS Genetics, Vol: 13, ISSN: 1553-7390

Gene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own inheritance, gene drives can rapidly introduce genetic traits even if these confer a negative fitness effect on the population. We have recently developed gene drives based on CRISPR nuclease constructs that are designed to disrupt key genes essential for female fertility in the malaria mosquito. The construct copies itself and the associated genetic disruption from one homologous chromosome to another during gamete formation, a process called homing that ensures the majority of offspring inherit the drive. Such drives have the potential to cause long-lasting, sustainable population suppression, though they are also expected to impose a large selection pressure for resistance in the mosquito. One of these population suppression gene drives showed rapid invasion of a caged population over 4 generations, establishing proof of principle for this technology. In order to assess the potential for the emergence of resistance to the gene drive in this population we allowed it to run for 25 generations and monitored the frequency of the gene drive over time. Following the initial increase of the gene drive we observed a gradual decrease in its frequency that was accompanied by the spread of small, nuclease-induced mutations at the target gene that are resistant to further cleavage and restore its functionality. Such mutations showed rates of increase consistent with positive selection in the face of the gene drive. Our findings represent the first documented example of selection for resistance to a synthetic gene drive and lead to important design recommendations and considerations in order to mitigate for resistance in future gene drive applications.

Journal article

Bernardini F, Galizi R, Wunderlich M, Taxiarchi C, Kranjc N, Kyrou K, Hammond A, Nolan T, Lawniczak MNK, Papathanos PA, Crisanti A, Windbichler Net al., 2017, Cross-Species Y Chromosome Function Between Malaria Vectors of the Anopheles gambiae Species Complex., Genetics, ISSN: 0016-6731

Y chromosome function, structure and evolution is poorly understood in many species including the Anopheles genus of mosquitoes, an emerging model system for studying speciation that also represents the major vectors of malaria. While the Anopheline Y had previously been implicated in male mating behavior, recent data from the Anopheles gambiae complex suggests that, apart from the putative primary sex-determiner, no other genes are conserved on the Y. Studying the functional basis of the evolutionary divergence of the Y chromosome in the gambiae complex is complicated by complete F1 male hybrid sterility. Here we used an F1xF0 crossing scheme to overcome a severe bottleneck of male hybrid incompatibilities and enabled us to experimentally purify a genetically labelled A. gambiae Y chromosome in an A. arabiensis background. Whole genome sequencing confirmed that the A. gambiae Y retained its original sequence content in the A. arabiensis genomic background. In contrast to comparable experiments in Drosophila, we find that the presence of a heterospecific Y chromosome has no significant effect on the expression of A. arabiensis genes and transcriptional differences can be explained almost exclusively as a direct consequence of transcripts arising from sequence elements present on the A. gambiae Y chromosome itself. We find that Y hybrids show no obvious fertility defects and no substantial reduction in male competitiveness. Our results demonstrate that, despite their radically different structure, Y chromosomes of these two species of the gambiae complex that diverged an estimated 1.85Myr ago function interchangeably, thus indicating that the Y chromosome does not harbor loci contributing to hybrid incompatibility. Therefore, Y chromosome gene flow between members of the gambiae complex is possible even at their current level of divergence. Importantly, this also suggests that malaria control interventions based on sex-distorting Y drive would be transferable, whethe

Journal article

Werther R, Hallinan JP, Lambert AR, Havens K, Pogson M, Jarjour J, Galizi R, Windbichler N, Crisanti A, Nolan T, Stoddard BLet al., 2017, Crystallographic analyses illustrate significant plasticity and efficient recoding of meganuclease target specificity, Nucleic Acids Research, Vol: 45, Pages: 8621-8634, ISSN: 0305-1048

The retargeting of protein–DNA specificity, outsideof extremely modular DNA binding proteins suchas TAL effectors, has generally proved to be quitechallenging. Here, we describe structural analysesof five different extensively retargeted variants of asingle homing endonuclease, that have been shownto function efficiently in ex vivo and in vivo applications.The redesigned proteins harbor mutationsat up to 53 residues (18%) of their amino acid sequence,primarily distributed across the DNA bindingsurface, making them among the most signifi-cantly reengineered ligand-binding proteins to date.Specificity is derived from the combined contributionsof DNA-contacting residues and of neighboringresidues that influence local structural organization.Changes in specificity are facilitated by theability of all those residues to readily exchange bothform and function. The fidelity of recognition is notprecisely correlated with the fraction or total numberof residues in the protein–DNA interface that areactually involved in DNA contacts, including directionalhydrogen bonds. The plasticity of the DNArecognitionsurface of this protein, which allows substantialretargeting of recognition specificity withoutrequiring significant alteration of the surroundingprotein architecture, reflects the ability of the correspondinggenetic elements to maintain mobility andpersistence in the face of genetic drift within potentialhost target sites.

Journal article

Papa F, Windbichler N, Waterhouse RM, Cagnetti A, D'Amato R, Persampieri T, Lawniczak MKN, Nolan T, Papathanos PAet al., 2017, Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes, GENOME RESEARCH, Vol: 27, Pages: 1536-1548, ISSN: 1088-9051

Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues.

Journal article

Bernardini F, Galizi R, Wunderlich M, Taxiarchi C, Kranjc N, Kyrou K, Hammond A, Nolan T, Lawniczak M, Papathanos PA, Crisanti A, Windbichler Net al., 2017, Cross-species Y chromosome function between malaria vectors of the Anopheles gambiae species complex, Genetics: a periodical record of investigations bearing on heredity and variation, ISSN: 0016-6731

Abstract Y chromosome function, structure and evolution is poorly understood in many species including the Anopheles genus of mosquitoes, an emerging model system for studying speciation that also represents the major vectors of malaria. While the Anopheline Y had previously been implicated in male mating behavior, recent data from the Anopheles gambiae complex suggests that, apart from the putative primary sex-determiner, no other genes are conserved on the Y. Studying the functional basis of the evolutionary divergence of the Y chromosome in the gambiae complex is complicated by complete F1 male hybrid sterility. Here we used an F1xF0 crossing scheme to overcome a severe bottleneck of male hybrid incompatibilities and enabled us to experimentally purify a genetically labelled A. gambiae Y chromosome in an A. arabiensis background. Whole genome sequencing confirmed that the A. gambiae Y retained its original sequence content in the A. arabiensis genomic background. In contrast to comparable experiments in Drosophila , we find that the presence of a heterospecific Y chromosome has no significant effect on the expression of A. arabiensis genes and transcriptional differences can be explained almost exclusively as a direct consequence of transcripts arising from sequence elements present on the A. gambiae Y chromosome itself. We find that Y hybrids show no obvious fertility defects and no substantial reduction in male competitiveness. Our results demonstrate that, despite their radically different structure, Y chromosomes of these two species of the gambiae complex that diverged an estimated 1.85Myr ago function interchangeably, thus indicating that the Y chromosome does not harbor loci contributing to hybrid incompatibility. Therefore, Y chromosome gene flow between members of the gambiae complex is possible even at their current level of divergence. Importantly, this also suggests that malaria control interventions based on sex-distorting Y drive would be transferab

Journal article

Hammond A, Kyrou K, Bruttini M, North A, Galizi R, Karlsson X, Carpi F, DAurizio R, Crisanti A, Nolan Tet al., 2017, The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito, PLoS Genetics, ISSN: 1553-7390

ABSTRACT Gene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own inheritance gene drives can rapidly introduce genetic traits even if these confer a negative fitness on the population. We have recently developed gene drives based on a CRISPR nuclease construct that is designed to disrupt key genes essential for female fertility in the malaria mosquito. The construct copies itself and the associated genetic disruption from one homologous chromosome to another during gamete formation, in a process called homing that ensures the majority of offspring inherit the drive. Such drives have the potential to cause long-lasting, sustainable population suppression though they are also expected to impose a large selection pressure for resistance in the mosquito. One of these population suppression gene drives showed rapid invasion of a caged population over 4 generations, establishing proof of principle for this technology. In order to assess the potential for the emergence of resistance to the gene drive in this population we allowed it to run for 25 generations and monitored the frequency of the gene drive over time. Following the initial increase of the gene drive we noticed a gradual decrease in its frequency that was accompanied emergence of small, nuclease-induced mutations at the target gene that are resistant to further cleavage and restore its functionality. Such mutations show rates of increase consistent with positive selection in the face of the gene drive. Our findings represent the first documented example of selection for resistance to a synthetic gene drive and lead to important design recommendations and considerations in order to mitigate for resistance for future gene drive applications.

Journal article

NOLAN T, CRISANTI A, 2017, Using gene drives to limit the spread of malaria, Scientist, Vol: 31, ISSN: 0890-3670

Journal article

Simoes ML, Dong Y, Hammond A, Hall A, Crisanti A, Nolan T, Dimopoulos Get al., 2017, The Anopheles FBN9 immune factor mediates Plasmodium species-specific defense through transgenic fat body expression, Developmental and Comparative Immunology, Vol: 67, Pages: 257-265

Journal article

Beaghton A, Hammond A, Nolan T, Crisanti A, Godfray HCJ, Burt Aet al., 2017, Requirements for Driving Antipathogen Effector Genes into Populations of Disease Vectors by Homing, Genetics, Vol: 205, Pages: 1587-1596

Journal article

Galizi R, Hammond A, Kyrou K, Taxiarchi C, Bernardini F, O'Loughlin SM, Papathanos PA, Nolan T, Windbichler N, Crisanti Aet al., 2016, A CRISPR-Cas9 sex-ratio distortion system for genetic control., Scientific Reports, Vol: 6, ISSN: 2045-2322

Genetic control aims to reduce the ability of insect pest populations to cause harm via the release of modified insects. One strategy is to bias the reproductive sex ratio towards males so that a population decreases in size or is eliminated altogether due to a lack of females. We have shown previously that sex ratio distortion can be generated synthetically in the main human malaria vector Anopheles gambiae, by selectively destroying the X-chromosome during spermatogenesis, through the activity of a naturally-occurring endonuclease that targets a repetitive rDNA sequence highly-conserved in a wide range of organisms. Here we describe a CRISPR-Cas9 sex distortion system that targets ribosomal sequences restricted to the member species of the Anopheles gambiae complex. Expression of Cas9 during spermatogenesis resulted in RNA-guided shredding of the X-chromosome during male meiosis and produced extreme male bias among progeny in the absence of any significant reduction in fertility. The flexibility of CRISPR-Cas9 combined with the availability of genomic data for a range of insects renders this strategy broadly applicable for the species-specific control of any pest or vector species with an XY sex-determination system by targeting sequences exclusive to the female sex chromosome.

Journal article

Hall AB, Papathanos P-A, Sharma A, Cheng C, Akbari OS, Assour L, Bergman NH, Cagnetti A, Crisanti A, Dottorini T, Fiorentini E, Galizi R, Hnath J, Jiang X, Koren S, Nolan T, Radune D, Sharakhova MV, Steele A, Timoshevskiy VA, Windbichler N, Zhang S, Hahn MW, Phillippy AM, Emrich SJ, Sharakhov IV, Tu ZJ, Besansky NJet al., 2016, Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes, Proceedings of the National Academy of Sciences of the United States of America, Vol: 113, Pages: E2114-E2123

Journal article

Nolan T, Crisanti A, 2016, DRIVING OUT MALARIA, Scientist, Vol: 31, Pages: 24-31

Journal article

Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, Gribble M, Baker D, Marois E, Russell S, Burt A, Windbichler N, Crisanti A, Nolan Tet al., 2016, A CRISPR-Cas9 gene drive system-targeting female reproduction in the malaria mosquito vector Anopheles gambiae, Nature Biotechnology, Vol: 34, Pages: 78-83, ISSN: 1087-0156

Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission.

Journal article

Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arca B, Arensburger P, Artemov G, Assour LA, Basseri H, Berlin A, Birren BW, Blandin SA, Brockman AI, Burkot TR, Burt A, Chan CS, Chauve C, Chiu JC, Christensen M, Costantini C, Davidson VLM, Deligianni E, Dottorini T, Dritsou V, Gabriel SB, Guelbeogo WM, Hall AB, Han MV, Hlaing T, Hughes DST, Jenkins AM, Jiang X, Jungreis I, Kakani EG, Kamali M, Kemppainen P, Kennedy RC, Kirmitzoglou IK, Koekemoer LL, Laban N, Langridge N, Lawniczak MKN, Lirakis M, Lobo NF, Lowy E, MacCallum RM, Mao C, Maslen G, Mbogo C, McCarthy J, Michel K, Mitchell SN, Moore W, Murphy KA, Naumenko AN, Nolan T, Novoa EM, O Loughlin S, Oringanje C, Oshaghi MA, Pakpour N, Papathanos PA, Peery AN, Povelones M, Prakash A, Price DP, Rajaraman A, Reimer LJ, Rinker DC, Rokas A, Russell TL, Sagnon NF, Sharakhova MV, Shea T, Simao FA, Simard F, Slotman MA, Somboon P, Stegniy V, Struchiner CJ, Thomas GWC, Tojo M, Topalis P, Tubio JMC, Unger MF, Vontas J, Walton C, Wilding CS, Willis JH, Wu Y-C, Yan G, Zdobnov EM, Zhou X, Catteruccia F, Christophides GK, Collins FH, Cornman RS, Crisanti A, Donnelly MJ, Emrich SJ, Fontaine MC, Gelbart W, Hahn MW, Hansen IA, Howell PI, Kafatos FC, Kellis M, Lawson D, Louis C, Luckhart S, Muskavitch MAT, Ribeiro JM, Riehle MA, Sharakhov IV, Tu Z, Zwiebel LJ, Besansky NJet al., 2015, Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes, Science, Vol: 347

Journal article

Castellano L, Rizzi E, Krell J, Di Cristina M, Galizi R, Mori A, Tam J, De Bellis G, Stebbing J, Crisanti A, Nolan Tet al., 2015, The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs, Bmc Genomics, Vol: 16

Journal article

Volohonsky G, Terenzi O, Soichot J, Naujoks DA, Nolan T, Windbichler N, Kapps D, Smidler AL, Vittu A, Costa G, Steinert S, Levashina EA, Blandin SA, Marois Eet al., 2015, Tools for Anopheles gambiae Transgenesis, G3-Genes Genomes Genetics, Vol: 5, Pages: 1151-1163

Journal article

Thyme SB, Boissel SJS, Quadri SA, Nolan T, Baker DA, Park RU, Kusak L, Ashworth J, Baker Det al., 2014, Reprogramming homing endonuclease specificity through computational design and directed evolution, Nucleic Acids Research, Vol: 42, Pages: 2564-2576, ISSN: 0305-1048

Homing endonucleases (HEs) can be used to induce targeted genome modification to reduce the fitness of pathogen vectors such as the malaria-transmitting Anopheles gambiae and to correct deleterious mutations in genetic diseases. We describe the creation of an extensive set of HE variants with novel DNA cleavage specificities using an integrated experimental and computational approach. Using computational modeling and an improved selection strategy, which optimizes specificity in addition to activity, we engineered an endonuclease to cleave in a gene associated with Anopheles sterility and another to cleave near a mutation that causes pyruvate kinase deficiency. In the course of this work we observed unanticipated context-dependence between bases which will need to be mechanistically understood for reprogramming of specificity to succeed more generally.

Journal article

Fuchs S, Rende E, Crisanti A, Nolan Tet al., 2014, Disruption of aminergic signalling reveals novel compounds with distinct inhibitory effects on mosquito reproduction, locomotor function and survival, Scientific Reports, Vol: 4

Journal article

Fuchs S, Behrends V, Bundy JG, Crisanti A, Nolan Tet al., 2014, Phenylalanine Metabolism Regulates Reproduction and Parasite Melanization in the Malaria Mosquito, Plos One, Vol: 9

Journal article

Fuchs S, Rende E, Crisanti A, Nolan Tet al., 2014, Disruption of aminergic signalling reveals novel compounds with distinct inhibitory effects on mosquito reproduction, locomotor function and survival., Scientific Reports, Vol: 4, Pages: srep05526-srep05526

Journal article

Hammond AM, Nolan T, Benedict MQ, 2014, Sex-, tissue- and stage-specific transgene expression., Transgenic insects: techniques and applications, Pages: 29-50

Journal article

Fuchs S, Nolan T, Crisanti A, 2013, Mosquito transgenic technologies to reduce plasmodium transmission, Methods in Molecular Biology, Vol: 923, Pages: 601-622, ISSN: 1064-3745

The ability to introduce genetic constructs of choice into the genome of Anopheles mosquitoes provides a valuable tool to study the molecular interactions between the Plasmodium parasite and its insect host. In the long term, this technology could potentially offer new ways to control vector-borne diseases through the suppression of target mosquito populations or through the introgression of traits that preclude pathogen transmission. Here, we describe in detail protocols for the generation of transgenic Anopheles gambiae mosquitoes based on germ-line transformation using either modified transposable elements or the sitespecific PhiC31 recombinase .© Springer Science+Business Media, LLC 2013.

Journal article

Fuchs S, Nolan T, Crisanti A, 2013, Mosquito transgenic technologies to reduce Plasmodium transmission., Methods in molecular biology (Clifton, N.J.), Vol: 923, Pages: 601-22

Journal article

Nolan T, 2012, Identifying an essential interaction between malaria parasites and erythrocytes unlocks the door to promising vaccine targets, Pathogens and Global Health, Vol: 106, Pages: 64-64

Journal article

Baker DA, Nolan T, Fischer B, Pinder A, Crisanti A, Russell Set al., 2011, A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae, BMC Genomics, Vol: 12, ISSN: 1471-2164

Background: The mosquito, Anopheles gambiae, is the primary vector of human malaria, a disease responsible formillions of deaths each year. To improve strategies for controlling transmission of the causative parasite,Plasmodium falciparum, we require a thorough understanding of the developmental mechanisms, physiologicalprocesses and evolutionary pressures affecting life-history traits in the mosquito. Identifying genes expressed inparticular tissues or involved in specific biological processes is an essential part of this process.Results: In this study, we present transcription profiles for ~82% of annotated Anopheles genes in dissected adultmale and female tissues. The sensitivity afforded by examining dissected tissues found gene activity in anadditional 20% of the genome that is undetected when using whole-animal samples. The somatic andreproductive tissues we examined each displayed patterns of sexually dimorphic and tissue-specific expression.By comparing expression profiles with Drosophila melanogaster we also assessed which genes are well conservedwithin the Diptera versus those that are more recently evolved.Conclusions: Our expression atlas and associated publicly available database, the MozAtlas (http://www.tissue-atlas.org), provides information on the relative strength and specificity of gene expression in several somatic andreproductive tissues, isolated from a single strain grown under uniform conditions. The data will serve as areference for other mosquito researchers by providing a simple method for identifying where genes are expressedin the adult, however, in addition our resource will also provide insights into the evolutionary diversity associatedwith gene expression levels among species.

Journal article

Nolan T, Papathanos P, Windbichler N, Magnusson K, Benton J, Catteruccia F, Crisanti Aet al., 2011, Developing transgenic Anopheles mosquitoes for the sterile insect technique, Genetica, Vol: 139, Pages: 33-39

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00231642&limit=30&person=true&page=2&respub-action=search.html