Imperial College London

DrTristanRodriguez

Faculty of MedicineNational Heart & Lung Institute

Reader in Cell and Developmental Biology
 
 
 
//

Contact

 

+44 (0)20 7594 5448tristan.rodriguez Website

 
 
//

Location

 

331ICTEM buildingHammersmith Campus

//

Summary

 

Summary

Tristan Rodríguez joined the National Heart and Lung Institute (NHLI) in 2011.

Tristan Rodríguez  trained as an embryologist in the laboratory of the late Dr. Rosa Beddington (National Institute for Medical Research, London, Mill Hill), who was a key figure in establishing the early mouse embryo as a model system to understand cell fate. In 2002 he was awarded a Lister Institute of Medicine non-clinical fellowship to work on axis specification in the mouse embryo and moved to the MRC Clinical Sciences Centre to initiate this work. At the end of 2011 the Rodriguez laboratory moved to NHLI as part of a new cardiovascular initiative. Here, the research  group is focussed on studying the regulation of cell fitness during development and understanding the selective pressures that act to remove suboptimal cells from the embryo. For this the Rodríguez group takes three approaches that combine the fields of embryology, cell metabolism and cell signalling.

The first approach is to analyse the cell intrinsic determinants of cell fitness with a specific focus on the mitochondria. For example the group studies how changes in the balance of mitochondrial fusion and fission allows the embryo to adapt its apoptotic threshold to the changing metabolic requirements that take place during embryonic development. The group also studies the importance that mitochondrial DNA copy number and sequence has on mitochondrial performance during differentiation.

 The second approach that the group takes is to study the cell non-autonomous mechanisms that regulate cell fitness. For this the focus is on cell competition, a quality control mechanism that allows the comparison of fitness levels between cells and results in the elimination of those cells that are less fit than their neighbours, even though they may be viable in a different context. An important implication of our work is that cellular fitness is not only a cell-intrinsic property, but is also determined relative to the fitness of neighbouring cells– a cell that is of sub-optimal fitness in one context may be ‘super- fit’ in the context of a different cell population. The group analysis the mechanisms by which cell fitness is measured between cells and the pathways that respond to this fitness sensing by promoting apoptosis in the less-fit cell type or proliferation in the fitter cell. 

Finally, the group also studies the importance of cell competition in disease. For example the importance that cell competition has in the expansion of cancer cells. For this they study how transformed cells such as glioblastoma stem cells use cell competition to eliminate their un-transformed neighbours as a mechanism to expand within the neural stem cell niche.

Selected Publications

Journal Articles

Bowling S, Di Gregorio A, Sancho M, et al., 2018, P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development, Nature Communications, Vol:9, ISSN:2041-1723

Lima A, Burgstaller J, Sanchez-Nieto JM, et al., 2018, The Mitochondria and the Regulation of Cell Fitness During Early Mammalian Development, Current Topics in Developmental Biology, Vol:128, ISSN:0070-2153, Pages:339-363

Di Gregorio A, Bowling S, Rodriguez TA, 2016, Cell Competition and Its Role in the Regulation of Cell Fitness from Development to Cancer, Developmental Cell, Vol:38, ISSN:1534-5807, Pages:621-634

Arber C, Precious SV, Cambray S, et al., 2015, Activin A directs striatal projection neuron differentiation of human pluripotent stem cells, Development, Vol:142, ISSN:0950-1991, Pages:1375-1386

Peltzer N, Rieser E, Taraborrelli L, et al., 2014, HOIP Deficiency Causes Embryonic Lethality by Aberrant TNFR1-Mediated Endothelial Cell Death, Cell Reports, Vol:9, ISSN:2211-1247, Pages:153-165

Pernaute B, Spruce T, Smith KM, et al., 2014, MicroRNAs control the apoptotic threshold in primed Pluripotent stem cells through regulation of BIM, Genes & Development, Vol:28, ISSN:0890-9369, Pages:1873-1878

Sancho M, Di-Gregorio A, George N, et al., 2013, Competitive Interactions Eliminate Unfit Embryonic Stem Cells at the Onset of Differentiation, Developmental Cell, Vol:26, ISSN:1534-5807, Pages:19-30

Cambray S, Arber C, Little G, et al., 2012, Activin induces cortical interneuron identity and differentiation in embryonic stem cell-derived telencephalic neural precursors, Nature Communications, Vol:3, ISSN:2041-1723

Clements M, Pernaute B, Vella F, et al., 2011, Crosstalk between Nodal/Activin and MAPK p38 Signaling Is Essential for Anterior-Posterior Axis Specification, Current Biology, Vol:21, ISSN:0960-9822, Pages:1289-1295

Stuckey DW, Clements M, Di-Gregorio A, et al., 2011, Coordination of cell proliferation and anterior-posterior axis establishment in the mouse embryo, Development, Vol:138, ISSN:0950-1991, Pages:1521-1530

Spruce T, Pernaute B, Di-Gregorio A, et al., 2010, An Early Developmental Role for miRNAs in the Maintenance of Extraembryonic Stem Cells in the Mouse Embryo, Developmental Cell, Vol:19, ISSN:1534-5807, Pages:207-219

More Publications