Imperial College London

Wolfram Wiesemann

Business School

Professor of Analytics and Operations



+44 (0)20 7594 9150ww Website




381Business School BuildingSouth Kensington Campus





Publication Type

1 results found

Nguyen VA, Shafieezadeh-Abadeh S, Yue M-C, Kuhn D, Wiesemann Wet al., 2019, Optimistic distributionally robust optimization for nonparametric likelihood approximation, 33rd Conference on Neural Information Processing Systems (NeurIPS), Publisher: NEURAL INFORMATION PROCESSING SYSTEMS (NIPS), Pages: 1-11, ISSN: 1049-5258

The likelihood function is a fundamental component in Bayesian statistics. However, evaluating the likelihood of an observation is computationally intractable in many applications. In this paper, we propose a non-parametric approximation of the likelihood that identifies a probability measure which lies in the neighborhood of the nominal measure and that maximizes the probability of observing the given sample point. We show that when the neighborhood is constructed by the Kullback-Leibler divergence, by moment conditions or by the Wasserstein distance, then our optimistic likelihood can be determined through the solution of a convex optimization problem, and it admits an analytical expression in particular cases. We also show that the posterior inference problem with our optimistic likelihood approximation enjoys strong theoretical performance guarantees, and it performs competitively in a probabilistic classification task.

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00503292&limit=30&person=true