Imperial College London

Professor Yiannis Demiris

Faculty of EngineeringDepartment of Electrical and Electronic Engineering

Professor of Human-Centred Robotics, Head of ISN



+44 (0)20 7594 6300y.demiris Website




1014Electrical EngineeringSouth Kensington Campus






BibTex format

author = {Simmons, G and Demiris, Y},
doi = {10.1002/rob.20092},
journal = {Journal of Robotic Systems},
pages = {677--690},
title = {Optimal robot arm control using the minimum variance model},
url = {},
volume = {22},
year = {2005}

RIS format (EndNote, RefMan)

AB - Models of human movement from computational neuroscience provide a starting point for building a system that can produce flexible adaptive movement on a robot. There have been many computational models of human upper limb movement put forward, each attempting to explain one or more of the stereotypical features that characterize such movements. While these models successfully capture some of the features of human movement, they often lack a compelling biological basis for the criteria they choose to optimize. One that does provide such a basis is the minimum variance model (and its extension—task optimization in the presence of signal-dependent noise). Here, the variance of the hand position at the end of a movement is minimized, given that the control signals on the arm's actuators are subject to random noise with zero mean and variance proportional to the amplitude of the signal. Since large control signals, required to move fast, would have higher amplitude noise, the speed-accuracy trade-off emerges as a direct result of the optimization process. We chose to implement a version of this model that would be suitable for the control of a robot arm, using an optimal control scheme based on the discrete-time linear quadratic regulator. This implementation allowed us to examine the applicability of the minimum variance model to producing humanlike movement. In this paper, we describe our implementation of the minimum variance model, both for point-to-point reaching movements and for more complex trajectories involving via points. We also evaluate its performance in producing humanlike movement and show its advantages over other optimization based models (the well-known minimum jerk and minimum torque-change models) for the control of a robot arm.
AU - Simmons,G
AU - Demiris,Y
DO - 10.1002/rob.20092
EP - 690
PY - 2005///
SN - 0741-2223
SP - 677
TI - Optimal robot arm control using the minimum variance model
T2 - Journal of Robotic Systems
UR -
VL - 22
ER -