Imperial College London

Professor Yiannis Demiris

Faculty of EngineeringDepartment of Electrical and Electronic Engineering

Professor of Human-Centred Robotics, Head of ISN
 
 
 
//

Contact

 

+44 (0)20 7594 6300y.demiris Website

 
 
//

Location

 

1014Electrical EngineeringSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

182 results found

Wu Y, Demiris Y, 2009, Efficient Template-based Path Imitation by Invariant Feature Mapping, International Conference on Robotics and Biomimetics (ROBIO), Publisher: IEEE, Pages: 913-918

We propose a novel approach for robot movement imitation that is suitable for robotic arm movement in tasks such as reaching and grasping. This algorithm selects a previously observed path demonstrated by an agent and generates a path in a novel situation based on pairwise mapping of invariant feature locations present in both the demonstrated and the new scenes using minimum distortion and minimum energy strategies. This One-Shot Learning algorithm is capable of not only mapping simple point-to-point paths but also adapting to more complex tasks such as involvement of forced waypoints. As compared to traditional methodologies, our work does not require extensive training for generalisation as well as expensive run-time computation for accuracy. Cross-validation statistics of grasping experiments show great similarity between the paths produced by human subjects and the proposed algorithm.

CONFERENCE PAPER

Carlson T, Demiris Y, 2008, Human-wheelchair collaboration through prediction of intention and adaptive assistance, IEEE International Conference on Robotics and Automation, Publisher: IEEE, Pages: 3926-3931, ISSN: 1050-4729

CONFERENCE PAPER

Demiris Y, Khadhouri B, 2008, Content-based control of goal-directed attention during human action perception, Interaction Studies, Vol: 9, Pages: 353-376, ISSN: 1572-0373

During the perception of human actions by robotic assistants, the robotic assistant needs to direct its computational and sensor resources to relevant parts of the human action. In previous work we have introduced HAMMER (Hierarchical Attentive Multiple Models for Execution and Recognition) (Demiris and Khadhouri, 2006), a computational architecture that forms multiple hypotheses with respect to what the demonstrated task is, and multiple predictions with respect to the forthcoming states of the human action. To confirm their predictions, the hypotheses request information from an attentional mechanism, which allocates the robot's resources as a function of the saliency of the hypotheses. In this paper we augment the attention mechanism with a component that considers the content of the hypotheses' requests, with respect to the content's reliability, utility and cost. This content-based attention component further optimises the utilisation of the resources while remaining robust to noise. Such computational mechanisms are important for the development of robotic devices that will rapidly respond to human actions, either for imitation or collaboration purposes.

JOURNAL ARTICLE

Demiris Y, Khadhouri B, 2008, Content-based control of goal-directed attention during human action perception, Interaction Studies: social behaviour and communication in biological and artificial systems, Vol: 9, Pages: 353-376

JOURNAL ARTICLE

Demiris Y, Meltzoff A, 2008, The Robot in the Crib: A Developmental Analysis of Imitation Skills in Infants and Robots., Infant and Child Development, Vol: 17, Pages: 43-53, ISSN: 1522-7227

Interesting systems, whether biological or artificial, develop. Starting from some initial conditions, they respond to environmental changes, and continuously improve their capabilities. Developmental psychologists have dedicated significant effort to studying the developmental progression of infant imitation skills, because imitation underlies the infant's ability to understand and learn from his or her social environment. In a converging intellectual endeavour, roboticists have been equipping robots with the ability to observe and imitate human actions because such abilities can lead to rapid teaching of robots to perform tasks. We provide here a comparative analysis between studies of infants imitating and learning from human demonstrators, and computational experiments aimed at equipping a robot with such abilities. We will compare the research across the following two dimensions: (a) initial conditions-what is innate in infants, and what functionality is initially given to robots, and (b) developmental mechanisms-how does the performance of infants improve over time, and what mechanisms are given to robots to achieve equivalent behaviour. Both developmental science and robotics are critically concerned with: (a) how their systems can and do go 'beyond the stimulus' given during the demonstration, and (b) how the internal models used in this process are acquired during the lifetime of the system.

JOURNAL ARTICLE

Fong T, Dautenhahn K, Scheutz M, Demiris Yet al., 2008, The Third International Conference on Human-Robot Interaction., AI Magazine, Vol: 29, Pages: 77-78

JOURNAL ARTICLE

Sastoque JCM, Rovira JLP, Lima ERD, Demiris Yet al., 2008, A Hybrid Method based on Fuzzy Inference and Non-Linear Oscillators for Real-Time Control of Gait., Publisher: INSTICC - Institute for Systems and Technologies of Information, Control and Communication, Pages: 44-51

CONFERENCE PAPER

Takacs B, Demiris Y, 2008, Balancing Spectral Clustering for Segmenting Spatio-Temporal Observations of Multi-Agent Systems, 8th IEEE International Conference on Data Mining, Publisher: IEEE COMPUTER SOC, Pages: 580-587, ISSN: 1550-4786

CONFERENCE PAPER

Tidemann A, Demiris Y, 2008, Groovy Neural Networks, 18th European Conference on Artificial Intelligence, Publisher: I O S PRESS, Pages: 271-275, ISSN: 0922-6389

CONFERENCE PAPER

Tidemann A, Demiris Y, 2008, A Drum Machine That Learns to Groove, 31st Annual German Conference on Artificial Intelligence, Publisher: SPRINGER-VERLAG BERLIN, Pages: 144-+, ISSN: 0302-9743

CONFERENCE PAPER

, 2008, Proceedings of the 3rd ACM/IEEE international conference on Human robot interaction, HRI 2008, Amsterdam, The Netherlands, March 12-15, 2008, Publisher: ACM

CONFERENCE PAPER

Dearden A, Demiris Y, 2007, From exploration to imitation: using learnt internal models to imitate others, AISB'07: Artificial and Ambient Intelligence, Publisher: AISB, Pages: 218-226

We present an architecture that enables asocial and social learning mechanisms to be combined in a unified framework on a robot. The robot learns two kinds of internal models by interacting with the environment with no a priori knowledge of its own motor system: internal object models are learnt about how its motor system and other objects appear in its sensor data; internal control models are learnt by babbling and represent how the robot controls objects. These asocially-learnt models of the robot’s motor system are used to understand the actions of a human demonstrator on objects that they can both interact with. Knowledge acquired through self-exploration is therefore used as a bootstrapping mechanism to understand others and benefit from their knowledge.

CONFERENCE PAPER

Dearden A, Demiris Y, Grau O, 2007, Learning models of camera control for imitation in football matches, AISB'07: Artificial and Ambient Intelligence, Publisher: AISB, Pages: 227-231

In this paper, we present ongoing work towards a system capable of learning from and imitating the movement of a trained cameraman and his director covering a football match. Useful features such as the pitch and the movement of players in the scene are detected using various computer vision techniques. In simulation, a robotic camera trains its own internal model for how it can affect these features. The movement of a real cameraman in an actual football game can be imitated by using this internal model.

CONFERENCE PAPER

Demiris Y, 2007, Prediction of intent in robotics and multi-agent systems., Cognitive Processing, Vol: 8, Pages: 151-158, ISSN: 1612-4782

Moving beyond the stimulus contained in observable agent behaviour, i.e. understanding the underlying intent of the observed agent is of immense interest in a variety of domains that involve collaborative and competitive scenarios, for example assistive robotics, computer games, robot-human interaction, decision support and intelligent tutoring. This review paper examines approaches for performing action recognition and prediction of intent from a multi-disciplinary perspective, in both single robot and multi-agent scenarios, and analyses the underlying challenges, focusing mainly on generative approaches.

JOURNAL ARTICLE

Demiris Y, Billard A, 2007, Special Issue on Robot Learning by Observation, Demonstration, and Imitation, IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, Vol: 37, Pages: 254-255, ISSN: 1083-4419

This special issue contains selected extended contributions from both the Adaptation in Artificial and Biological Systems symposium held in Hertforshire in 2006 and the wider academic community following a public call for papers in 2006. The papers presented serve as a good illustration of the challenges faced by robotics researchers today in the field of programming by observation, demonstration, and imitation.

JOURNAL ARTICLE

Demiris Y K, 2007, Using Robots to study the mechanisms imitation, Neuroconstructivism: Perspectives and Prospects, Editors: Mareschal, Sirois, Westermann, Publisher: Oxford University Press, Pages: 159-178

BOOK CHAPTER

Demiris Y K, Johnson M, 2007, Simulation Theory for Understanding Others: A Robotics Perspective, Imitation and Social Learning in Robots, Humans and Animals: Behavioural Social and Communicative Dimensions, Pages: 89-102

BOOK CHAPTER

Johnson M, Demiris Y, 2007, Visuo-Cognitive Perspective Taking for Action Recognition, AISB'07: Artificial and Ambient Intelligence, Publisher: AISB, Pages: 262-269

Many excellent architectures exist that allow imitation of actions involving observable goals. In this paper, we develop a Simulation Theory-based architecture that uses continuous visual perspective taking to maintain a persistent model of the demonstrator's knowledge of object locations in dynamic environments; this allows an observer robot to attribute potential actions in the presence of goal occlusions, and predict the unfolding of actions through prediction of visual feedback to the demonstrator. The architecture is tested in robotic experiments, and results show that the approach also allows an observer robot to solve Theory-of-Mind tasks from the 'False Belief' paradigm.

CONFERENCE PAPER

Takács B, Butler S, Demiris Y, 2007, Multi-agent Behaviour Segmentation via Spectral Clustering, AAAI-2007 Workshop on Plan, Activity and Intention Recognition (PAIR), Publisher: AAAI, Pages: 74-81

We examine the application of spectral clustering for breaking up the behaviour of a multi-agent system in space and time into smaller, independent elements. We extend the clustering into the temporal domain and propose a novel similarity measure, which is shown to possess desirable temporal properties when clustering multi-agent behaviour. We also propose a technique to add knowledge about events of multi-agent interaction with different importance. We apply spectral clustering with this measure for analysing behaviour in a strategic game.

CONFERENCE PAPER

Tidemann A, Demiris Y, 2007, Imitating the Groove: Making Drum Machines more Human, AISB'07: Artificial and Ambient Intelligence, Publisher: AISB, Pages: 232-240

Current music production software allows rapid programming of drum patterns, but programmed patterns often lack the groove that a human drummer will provide, both in terms of being rhythmically too rigid and having no variation for longer periods of time. We have implemented an artificial software drummer that learns drum patterns by extracting user specific variations played by a human drummer. The artificial drummer then builds up a library of patterns it can use in different musical contexts. The artificial drummer models the groove and the variations of the human drummer, enhancing the realism of the produced patterns.

CONFERENCE PAPER

Chinellato E, Demiris Y, Pobil APD, 2006, Studying the human visual cortex for improving prehension capabilities in robotics., Publisher: IASTED/ACTA Press, Pages: 184-189

CONFERENCE PAPER

Chinellato E, Demiris Y, del Pobil AP, 2006, Studying the human visual cortex for achieving action-perception coordination with robots, Artificial Intelligence and Soft Computing, Editors: del Pobil, Publisher: Acta Press, Anaheim, CF, USA, Pages: 184-189

BOOK CHAPTER

Dearden A, Demiris Y, Grau O, 2006, Tracking football player movement from a single moving camera using particle filters, European Conference on Visual Media Production (CVMP), Publisher: IET, Pages: 29-37

This paper deals with the problem of tracking football players in a football match using data from a single moving camera. Tracking footballers from a single video source is difficult: not only do the football players occlude each other, but they frequently enter and leave the camera's field of view, making initialisation and destruction of a player's tracking a difficult task. The system presented here uses particle filters to track players. The multiple state estimates used by a particle filter provide an elegant method for maintaining tracking of players following an occlusion. Automated tracking can be achieved by creating and stopping particle filters depending on the input player data.

CONFERENCE PAPER

Dearden A, Demiris Y, Grau O, 2006, Tracking football player movement from a single moving camera using particle filters, Pages: 29-37

CONFERENCE PAPER

Dearden A, Demiris Y, 2006, Active learning of probabilistic forward models in visuo-motor development, AISB'06: Adaptation in Artificial and Biological Systems, Publisher: AISB, Pages: 176-183

Forward models enable both robots and humans to predict the sensory consequences of their motor actions. To learn its own forward models a robot needs to experiment with its own motor system, in the same way that human infants need to babble as a part of their motor development. In this paper we investigate how this babbling with the motor system can be influenced by the forward models’ own knowledge of their predictive ability. By spending more time babbling in regions of motor space that require more accuracy in the forward model, the learning time can be reduced. The key to guiding this exploration is the use of probabilistic forward models, which are capable of learning and predicting not just the sensory consequence of a motor command, but also an estimate of how accurate this prediction is. An experiment was carried out to test this theory on a robotic pan tilt camera.

CONFERENCE PAPER

Demiris Y, Khadhouri B, 2006, Hierarchical attentive multiple models for execution and recognition of actions, Robotics and Autonomous Systems, Vol: 54, Pages: 361-369, ISSN: 0921-8890

According to the motor theories of perception, the motor systems of an observer are actively involved in the perception of actions when these are performed by a demonstrator. In this paper we review our computational architecture, HAMMER (Hierarchical Attentive Multiple Models for Execution and Recognition), where the motor control systems of a robot are organised in a hierarchical, distributed manner, and can be used in the dual role of (a) competitively selecting and executing an action, and (b) perceiving it when performed by a demonstrator. We subsequently demonstrate that such an arrangement can provide a principled method for the top-down control of attention during action perception, resulting in significant performance gains. We assess these performance gains under a variety of resource allocation strategies.

JOURNAL ARTICLE

Demiris Y, Khadhouri B, 2006, Content-Based Control of Goal-Directed Attention During Human Action Perception, Pages: 226-231

CONFERENCE PAPER

Demiris Y, Simmons G, 2006, Perceiving the unusual: temporal properties of hierarchical motor representations for action perception, Neural Networks, Vol: 19, Pages: 272-284, ISSN: 0893-6080

Recent computational approaches to action imitation have advocated the use of hierarchical representations in the perception and imitation of demonstrated actions. Hierarchical representations present several advantages, with the main one being their ability to process information at multiple levels of detail. However, the nature of the hierarchies in these approaches has remained relatively unsophisticated, and their relation with biological evidence has not been investigated in detail, in particular with respect to the timing of movements. Following recent neuroscience work on the modulation of the premotor mirror neuron activity during the observation of unpredictable grasping movements, we present here an implementation of our HAMMER architecture using the minimum variance model for implementing reaching and grasping movements that have biologically plausible trajectories. Subsequently, we evaluate the performance of our model in matching the temporal dynamics of the modulation of cortical excitability during the passive observation of normal and unpredictable movements of human demonstrators.

JOURNAL ARTICLE

Simmons G, Demiris Y, 2006, Object grasping using the minimum variance model, BIOLOGICAL CYBERNETICS, Vol: 94, Pages: 393-407, ISSN: 0340-1200

JOURNAL ARTICLE

Veskos P, Demiris Y, 2006, Experimental comparison of the van der Pol and Rayleigh nonlinear oscillators for a robotic swinging task, AISB'06: Adaptation in Artificial and Biological Systems, Publisher: AISB, Pages: 197-202

In this paper, the effects of different lower-level building blocks of a robotic swinging system are explored, from the perspective of motor skill acquisition. The van der Pol and Rayleigh oscillators are used to entrain to the system’s natural dynamics, with two different network topologies being used: a symmetric and a hierarchical one. Rayleigh outperformed van der Pol regarding maximum oscillation amplitudes for every morphological configuration examined. However, van der Pol started large amplitude relaxation oscillations faster, attaining better performance during the first half of the transient period. Hence, even though there are great similarities between the oscillators, differences in their resultant behaviours are more pronounced than originally expected.

CONFERENCE PAPER

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00333953&limit=30&person=true&page=5&respub-action=search.html