TY - JOUR AB - We use observations of surface and top-of-theatmosphere(TOA) broadband radiation fluxes determinedfrom the Atmospheric Radiation Measurement programmemobile facility, the Geostationary Earth Radiation Budget(GERB) and Spinning Enhanced Visible and Infrared Imager(SEVIRI) instruments and a range of meteorologicalvariables at a site in the Sahel to test the ability of theECMWF Integrated Forecasting System cycle 43r1 to describeenergy budget variability. The model has daily averagebiases of −12 and 18 W m−2for outgoing longwaveand reflected shortwave TOA radiation fluxes, respectively.At the surface, the daily average bias is 12(13) W m−2for the longwave downwelling (upwelling) radiation fluxand −21(−13) W m−2for the shortwave downwelling (upwelling)radiation flux. Using multivariate linear models ofobservation–model differences, we attribute radiation fluxdiscrepancies to physical processes, and link surface andTOA fluxes. We find that model biases in surface radiationfluxes are mainly due to a low bias in ice water path (IWP),poor description of surface albedo and model–observationdifferences in surface temperature. We also attribute observeddiscrepancies in the radiation fluxes, particularly duringthe dry season, to the misrepresentation of aerosol fieldsin the model from use of a climatology instead of a dynamicapproach. At the TOA, the low IWP impacts the amount ofreflected shortwave radiation while biases in outgoing longwaveradiation are additionally coupled to discrepancies inthe surface upwelling longwave flux and atmospheric humidity AU - Mackie,A AU - Palmer,PI AU - Brindley,H DO - 10.5194/acp-17-15095-2017 EP - 15119 PY - 2017/// SN - 1680-7316 SP - 15095 TI - Characterizing energy budget variability at a Sahelian site: a test of NWP model behaviour T2 - Atmospheric Chemistry and Physics UR - http://dx.doi.org/10.5194/acp-17-15095-2017 UR - http://hdl.handle.net/10044/1/55809 VL - 17 ER -