TY - CPAPER AB - © 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved. An investigation on the aeroelastic effects in lateral manoeuvres with very flexible wings is presented. The aim is to identify efficient actuation strategies from fully coupled non- linear aeroelastic/flight dynamics models, which account for potential large wing deections to improve vehicle manoeuvrability. The flexible vehicle dynamics is described using geometrically-exact composite beams on a body-attached frame and an unsteady vortex lattice with arbitrary kinematics of the lifting surfaces, while rolling manoeuvres are identified through optimal control. A flight-dynamics model based on elastified stability derivatives is used as a reference, and it is observed to capture the relevant dynamics either under slow actuation or for stiff wings. Embedding the full aeroelastic description into an optimal control framework is shown to expand the space of achievable manoeuvres, such as quick wing response with low structural vibrations or large lateral forces with minimal lift losses. It is also seen to provide a general methodology to identify unconventional manoeuvres that utilize large wing geometry changes to meet multiple simultaneous control objectives. AU - Maraniello,S AU - Palacios,R PY - 2017/// TI - Geometrically-nonlinear effects in lateral manoeuvres with coupled flight dynamics and aeroelasticity ER -