TY - CPAPER AB - The present paper considers the employment of working-fluid mixtures in organic Rankine cycle (ORC)systems with respect to heat transfer performance, component sizing and costs, using two sets of fluidmixtures: n-pentane + n-hexane and R-245fa + R-227ea. Due to their non-isothermal phase-change behaviour,these zeotropic working-fluid mixtures promise reduced exergy losses, and thus improved cycleefficiencies and power outputs over their respective pure-fluid components. Although the fluid-mixturecycles do indeed show a thermodynamic improvement over the pure-fluid cycles, the heat transfer andcost analyses reveal that they require larger evaporators, condensers and expanders; thus, the resultingORC systems are also associated with higher costs, leading to possible compromises. In particular,70 mol% n-pentane + 30 mol% n-hexane and equimolar R-245fa + R-227ea mixtures lead to the thermodynamicallyoptimal cycles, whereas pure n-pentane and pure R-227ea have lower costs amounting to14% and 5% per unit power output over the thermodynamically optimal mixtures, respectively. AU - Oyewunmi,OA AU - Markides,CN PB - University of Liège and Ghent University PY - 2015/// TI - EFFECT OF WORKING-FLUID MIXTURES ON ORGANIC RANKINE CYCLE SYSTEMS: HEAT TRANSFER AND COST ANALYSIS UR - http://hdl.handle.net/10044/1/31458 ER -