TY - JOUR AB - The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor. AU - Pusch,A AU - Oh,S AU - Wuestner,S AU - Roschuk,T AU - De,Luca A AU - Chen,Y AU - Boual,S AU - Ali,Z AU - Phillips,C AU - Hong,M AU - Maier,S AU - Udrea,F AU - Hopper,R AU - Hess,O DO - 10.1038/srep17451 PY - 2015/// SN - 2045-2322 TI - A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices T2 - Scientific Reports UR - http://dx.doi.org/10.1038/srep17451 UR - http://hdl.handle.net/10044/1/28325 VL - 5 ER -