TY - UNPB AB - <jats:title>Abstract</jats:title><jats:p>Multi-photon laser scanning microscopy provides a powerful tool for monitoring the spatiotemporal dynamics of neural circuit activity. It is, however, intrinsically a point scanning technique. Standard raster scanning enables imaging at subcellular resolution; however, acquisition rates are limited by the size of the field of view to be scanned. Recently developed scanning strategies such as Travelling Salesman Scanning (TSS) have been developed to maximize cellular sampling rate by scanning only regions of interest in the field of view corresponding to locations of interest such as somata. However, such strategies are not optimized for the mechanical properties of galvanometric scanners. We describe here the Adaptive Spiral Scanning (SSA) algorithm, which fits a set of near-circular trajectories to the cellular distribution to avoid inertial drifts of galvanometer position. We compare its performance to raster scanning and TSS in terms of cellular sampling frequency and signal-to-noise ratio (SNR). Using surrogate neuron spatial position data, we show that SSA acquisition rates are an order of magnitude higher than those for raster scanning and generally exceed those achieved by TSS for neural densities comparable with those found in the cortex. We show that this result also holds true for <jats:italic>in vitro</jats:italic> hippocampal mouse brain slices bath loaded with the synthetic calcium dye Cal-520 AM. The ability of TSS to ”park” the laser on each neuron along the scanning trajectory, however, enables higher SNR than SSA when all targets are precisely scanned. Raster scanning has the highest SNR but at a substantial cost in number of cells scanned. To understand the impact of sampling rate and SNR on functional calcium imaging, we used the Cramér-Rao Bound on evoked calcium traces recorded simultaneously with electrophysiology traces to calculate the lower bound estima AU - Schuck,R AU - Go,MA AU - Garasto,S AU - Reynolds,S AU - Dragotti,PL AU - Schultz,SR DO - 10.1101/196428 PY - 2017/// TI - Multiphoton minimal inertia scanning for fast acquisition of neural activity signals UR - http://dx.doi.org/10.1101/196428 ER -