Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Pawar S, 2023,

    Another step towards a unifying theory for ecosystems?

    , JOURNAL OF BIOSCIENCES, Vol: 48, ISSN: 0250-5991
  • Journal article
    Mullin VE, Stephen W, Arce AN, Nash W, Raine C, Notton DG, Whiffin A, Blagderov V, Gharbi K, Hogan J, Hunter T, Irish N, Jackson S, Judd S, Watkins C, Haerty W, Ollerton J, Brace S, Gill RJ, Barnes Iet al., 2023,

    First large-scale quantification study of DNA preservation in insects from natural history collections using genome-wide sequencing

    , Methods in Ecology and Evolution, Vol: 14, Pages: 360-371, ISSN: 2041-210X

    1. Insect declines are a global issue with significant ecological and economic ramifications. Yet we have a poor understanding of the genomic impact these losses can have. Genome-wide data from historical specimens has the potential to provide baselines of population genetic measures to study population change, with natural history collections representing large repositories of such specimens. However, an initial challenge in conducting historical DNA data analyses, is to understand how molecular preservation varies between specimens.2. Here, we highlight how Next Generation Sequencing methods developed for studying archaeological samples can be applied to determine DNA preservation from only a single leg taken from entomological museum specimens, some of which are more than a century old. An analysis of genome-wide data from a set of 113 red-tailed bumblebee (Bombus lapidarius) specimens, from five British museum collections, was used to quantify DNA preservation over time. Additionally, to improve our analysis and further enable future research we generated a novel assembly of the red-tailed bumblebee genome. 3. Our approach shows that museum entomological specimens are comprised of short DNA fragments with mean lengths below 100 base pairs (BP), suggesting a rapid and large-scale post-mortem reduction in DNA fragment size. After this initial decline, however, we find a relatively consistent rate of DNA decay in our dataset, and estimate a mean reduction in fragment length of 1.9bp per decade. The proportion of quality filtered reads mapping to our assembled reference genome was around 50%, and decreased by 1.1 % per decade. 4. We demonstrate that historical insects have significant potential to act as sources of DNA to create valuable genetic baselines. The relatively consistent rate of DNA degradation, both across collections and through time, mean that population level analyses - for example for conservation or evolutionary studies - are entirely feasible, a

  • Journal article
    Ransome E, Hobbs F, Jones S, Coleman CM, Harris ND, Woodward G, Bell T, Trew J, Kolarević S, Kračun-Kolarević M, Savolainen Vet al., 2023,

    Evaluating the transmission risk of SARS-CoV-2 from sewage pollution

    , Science of the Total Environment, Vol: 858, Pages: 1-8, ISSN: 0048-9697

    The presence of SARS-CoV-2 in untreated sewage has been confirmed in many countries but its incidence and infection risk in contaminated waters is poorly understood. The River Thames in the UK receives untreated sewage from 57 Combined Sewer Overflows (CSOs), with many discharging dozens of times per year. This study investigated if such discharges provide a pathway for environmental transmission of SARS-CoV-2. Samples of wastewater, surface water, and sediment collected close to six CSOs on the River Thames were assayed over eight months for SARS-CoV-2 RNA and infectious virus. Bivalves were also sampled as an indicator species of viral bioaccumulation. Sediment and water samples from the Danube and Sava rivers in Serbia, where raw sewage is also discharged in high volumes, were assayed as a positive control. No evidence of SARS-CoV-2 RNA or infectious virus was found in UK samples, in contrast to RNA positive samples from Serbia. Furthermore, this study shows that infectious SARS-CoV-2 inoculum is stable in Thames water and sediment for <3 days, while SARS-CoV-2 RNA is detectable for at least seven days. This indicates that dilution of wastewater likely limits environmental transmission, and that detection of viral RNA alone is not an indication of pathogen spillover.

  • Journal article
    Arce A, Cantwell-Jones A, Tansley M, Barnes I, Brace S, Mullin VE, Notton D, Ollerton J, Eatough E, Rhodes MW, Bian X, Hogan J, Hunter T, Jackson S, Whiffin A, Blagoderov V, Broad G, Judd S, Kokkini P, Livermore L, Dixit MK, Pearse WD, Gill Ret al., 2023,

    Signatures of increasing environmental stress in bumblebee wings over the past century: Insights from museum specimens

    , Journal of Animal Ecology, Vol: 92, Pages: 297-309, ISSN: 0021-8790

    1. Determining when animal populations have experienced stress in the past is fundamental to understanding how risk factors drive contemporary and future species’ responses to environmental change. For insects, quantifying stress and associating it with environmental factors has been challenging due to a paucity of time-series data and because detectable population-level responses can show varying lag effects. One solution is to leverage historic entomological specimens to detect morphological proxies of stress experienced at the time stressors emerged, allowing us to more accurately determine population responses.2. Here we studied specimens of four bumblebee species, an invaluable group of insect pollinators, from five museums collected across Britain over the 20th century. We calculated the degree of fluctuating asymmetry (FA; random deviations from bilateral symmetry) between the right and left forewings as a potential proxy of developmental stress.3. We: i) investigated whether baseline FA levels vary between species, and how this compares between the first and second half of the century; ii) determined the extent of FA change over the century in the four bumblebee species, and whether this followed a linear or non-linear trend; iii) tested which annual climatic conditions correlated with increased FA in bumblebees.4. Species differed in their baseline FA, with FA being higher in the two species that have recently expanded their ranges in Britain. Overall, FA significantly increased over the century but followed a non-linear trend, with the increase starting c. 1925. We found relatively warm and wet years were associated with higher FA. 5. Collectively our findings show that FA in bumblebees increased over the 20th century and under weather conditions that will likely increase in frequency with climate change. By plotting FA trends and quantifying the contribution of annual climate conditions on past populations, we provide an important step towards impro

  • Journal article
    Garcia FC, Clegg T, O'Neill DB, Warfield R, Pawar S, Yvon-Durocher Get al., 2023,

    The temperature dependence of microbial community respiration is amplified by changes in species interactions

    , NATURE MICROBIOLOGY, Vol: 8, Pages: 272-283, ISSN: 2058-5276
  • Journal article
    Bloomfield KJ, Stocker BD, Keenan TF, Prentice ICet al., 2023,

    Environmental controls on the light use efficiency of terrestrial gross primary production

    , Global Change Biology, Vol: 29, Pages: 1037-1053, ISSN: 1354-1013

    Gross primary production (GPP) by terrestrial ecosystems is a key quantity in the global carbon cycle. The instantaneous controls of leaf-level photosynthesis are well established, but there is still no consensus on the mechanisms by which canopy-level GPP depends on spatial and temporal variation in the environment. The standard model of photosynthesis provides a robust mechanistic representation for C3 species; however, additional assumptions are required to “scale up” from leaf to canopy. As a consequence, competing models make inconsistent predictions about how GPP will respond to continuing environmental change. This problem is addressed here by means of an empirical analysis of the light use efficiency (LUE) of GPP inferred from eddy covariance carbon dioxide flux measurements, in situ measurements of photosynthetically active radiation (PAR), and remotely sensed estimates of the fraction of PAR (fAPAR) absorbed by the vegetation canopy. Focusing on LUE allows potential drivers of GPP to be separated from its overriding dependence on light. GPP data from over 100 sites, collated over 20 years and located in a range of biomes and climate zones, were extracted from the FLUXNET2015 database and combined with remotely sensed fAPAR data to estimate daily LUE. Daytime air temperature, vapor pressure deficit, diffuse fraction of solar radiation, and soil moisture were shown to be salient predictors of LUE in a generalized linear mixed-effects model. The same model design was fitted to site-based LUE estimates generated by 16 terrestrial ecosystem models. The published models showed wide variation in the shape, the strength, and even the sign of the environmental effects on modeled LUE. These findings highlight important model deficiencies and suggest a need to progress beyond simple “goodness of fit” comparisons of inferred and predicted carbon fluxes toward an approach focused on the functional responses of the underlying dependencies.

  • Journal article
    Brazeau MDD, Yuan H, Giles S, Jerve ALL, Zorig E, Ariunchimeg Y, Sansom RSS, Atwood RCCet al., 2023,

    A well-preserved 'placoderm' (stem-group Gnathostomata) upper jaw from the Early Devonian of Mongolia clarifies jaw evolution

    , Royal Society Open Science, Vol: 10, ISSN: 2054-5703

    The origin of jaws and teeth remains contentious in vertebrate evolution. ‘Placoderms’ (Silurian-Devonian armoured jawed fishes) are central to debates on the origins of these anatomical structures. ‘Acanthothoracids’ are generally considered the most primitive ‘placoderms’. However, they are so far known mainly from disarticulated skeletal elements that are typically incomplete. The structure of the jaws—particularly the jaw hinge—is poorly known, leaving open questions about their jaw function and comparison with other placoderms and modern gnathostomes. Here we describe a near-complete ‘acanthothoracid’ upper jaw, allowing us to reconstruct the likely orientation and angle of the bite and compare its morphology with that of other known ‘placoderm’ groups. We clarify that the bite position is located on the upper jaw cartilage rather than on the dermal cheek and thus show that there is a highly conserved bite morphology among most groups of ‘placoderms’, regardless of their overall cranial geometry. Incorporation of the dermal skeleton appears to provide a sound biomechanical basis for jaw origins. It appears that ‘acanthothoracid’ dentitions were fundamentally similar in location to that of arthrodire ‘placoderms’, rather than resembling bony fishes. Irrespective of current phylogenetic uncertainty, the new data here resolve the likely general condition for ‘placoderms’ as a whole, and as such, ancestral morphology of known jawed vertebrates.

  • Journal article
    Westerband AC, Wright IJ, Maire V, Paillassa J, Prentice IC, Atkin OK, Bloomfield KJ, Cernusak LA, Dong N, Gleason SM, Guilherme Pereira C, Lambers H, Leishman MR, Malhi Y, Nolan RHet al., 2023,

    Coordination of photosynthetic traits across soil and climate gradients

    , Global Change Biology, Vol: 29, Pages: 856-873, ISSN: 1354-1013

    "Least-cost theory" posits that C3 plants should balance rates of photosynthetic water loss and carboxylation in relation to the relative acquisition and maintenance costs of resources required for these activities. Here we investigated the dependency of photosynthetic traits on climate and soil properties using a new Australia-wide trait dataset spanning 528 species from 67 sites. We tested the hypotheses that plants on relatively cold or dry sites, or on relatively more fertile sites, would typically operate at greater CO2 drawdown (lower ratio of leaf internal to ambient CO2 , Ci :Ca ) during light-saturated photosynthesis, and at higher leaf N per area (Narea ) and higher carboxylation capacity (Vcmax 25 ) for a given rate of stomatal conductance to water vapour, gsw . These results would be indicative of plants having relatively higher water costs than nutrient costs. In general, our hypotheses were supported. Soil total phosphorus (P) concentration and (more weakly) soil pH exerted positive effects on the Narea -gsw and Vcmax 25 -gsw slopes, and negative effects on Ci :Ca . The P effect strengthened when the effect of climate was removed via partial regression. We observed similar trends with increasing soil cation exchange capacity and clay content, which affect soil nutrient availability, and found that soil properties explained similar amounts of variation in the focal traits as climate did. Although climate typically explained more trait variation than soil did, together they explained up to 52% of variation in the slope relationships and soil properties explained up to 30% of the variation in individual traits. Soils influenced photosynthetic traits as well as their coordination. In particular, the influence of soil P likely reflects the Australia's geologically ancient low-relief landscapes with highly leached soils. Least-cost theory provides a valuable framework for understanding trade-offs between resource costs and use in plants, including

  • Journal article
    Qureshi A, Keen E, Brown G, Cator Let al., 2023,

    The size of larval rearing container modulates the effects of diet amount and larval density on larval development in Aedes aegypti

    , PLoS One, Vol: 18, Pages: 1-18, ISSN: 1932-6203

    Mass-rearing of mosquitoes under laboratory conditions is an important part of several new control techniques that rely on the release of males to control mosquito populations. While previous work has investigated the effect of larval density and diet amount on colony productivity, the role of the size of the container in which larval development takes place has been relatively ignored. We investigated the role of container size in shaping life history and how this varied with density and food availability in Aedes aegypti, an important disease vector and target of mass-rearing operations. For each treatment combination, immature development time and survival and adult body size and fecundity were measured, and then combined into a measure of productivity. We additionally investigated how larval aggregation behaviour varied with container size. Container size had important effects on life history traits and overall productivity. In particular, increasing container size intensified density and diet effects on immature development time. Productivity was also impacted by container size when larvae were reared at high densities (1.4 larva/ml). In these treatments, the productivity metric of large containers was estimated to be significantly lower than medium or small containers. Regardless of container size, larvae were more likely to be observed at the outer edges of containers, even when this led to extremely high localized densities. We discuss how container size and larval aggregation responses may alter the balance of energy input and output to shape development and productivity.

  • Journal article
    Mills MB, Malhi Y, Ewers RM, Kho LK, Teh YA, Both S, Burslem DFRP, Majalap N, Nilus R, Huaraca Huasco W, Cruz R, Pillco MM, Turner EC, Reynolds G, Riutta Tet al., 2023,

    Tropical forests post-logging are a persistent net carbon source to the atmosphere.

    , Proceedings of the National Academy of Sciences of USA, Vol: 120, Pages: 1-7, ISSN: 0027-8424

    Logged and structurally degraded tropical forests are fast becoming one of the most prevalent land-use types throughout the tropics and are routinely assumed to be a net carbon sink because they experience rapid rates of tree regrowth. Yet this assumption is based on forest biomass inventories that record carbon stock recovery but fail to account for the simultaneous losses of carbon from soil and necromass. Here, we used forest plots and an eddy covariance tower to quantify and partition net ecosystem CO2 exchange in Malaysian Borneo, a region that is a hot spot for deforestation and forest degradation. Our data represent the complete carbon budget for tropical forests measured throughout a logging event and subsequent recovery and found that they constitute a substantial and persistent net carbon source. Consistent with existing literature, our study showed a significantly greater woody biomass gain across moderately and heavily logged forests compared with unlogged forests, but this was counteracted by much larger carbon losses from soil organic matter and deadwood in logged forests. We estimate an average carbon source of 1.75 ± 0.94 Mg C ha-1 yr-1 within moderately logged plots and 5.23 ± 1.23 Mg C ha-1 yr-1 in unsustainably logged and severely degraded plots, with emissions continuing at these rates for at least one-decade post-logging. Our data directly contradict the default assumption that recovering logged and degraded tropical forests are net carbon sinks, implying the amount of carbon being sequestered across the world's tropical forests may be considerably lower than currently estimated.

  • Journal article
    Schleuning M, Garcia D, Tobias JA, 2023,

    Animal functional traits: Towards a trait-based ecology for whole ecosystems

    , Functional Ecology, Vol: 37, Pages: 4-12, ISSN: 0269-8463
  • Journal article
    Sun Y, Dunning J, Taylor T, Schroeder J, Anne Zollinger Set al., 2023,

    Calls of Manx shearwater Puffinus puffinus contain individual signatures

    , Journal of Avian Biology, ISSN: 0908-8857

    Vocalisations are widely used to signal behavioural intention in animal communication, but may also carry acoustic signatures unique to the calling individual. Here, we used acoustic analysis to confirm that Manx shearwater Puffinus puffinus calls carry individual signatures, and discerned which features made the calls individual. Manx shearwater are nocturnal seabirds that breed in dense colonies, where they must recognize and locate mates among thousands of conspecifics calling in the dark. There is evidence for mate vocal recognition in two shearwater species, but quantitative data on the vocalisations are lacking. We elicited vocal responses to playback of conspecific calls in Manx shearwaters, and measured spectral and temporal parameters of the calls. We then applied linear discriminant analysis with leave-one-out cross-validation and could confirm the presence of individual vocal signatures. We then calculated among-individual repeatability of 34 features describing the vocalisation to determine the extent to which these features may contribute to individual signature coding. We found that calls cluster by individual in both temporal and spectral characteristics, suggesting these traits are contributing to Manx shearwaters' unique call signatures.

  • Journal article
    Wang H, Prentice IC, Wright IJ, warton DI, Qiao S, Xu X, Zhou J, Kikuzawa K, Stenseth NCet al., 2023,

    Leaf economics fundamentals explained by optimality principles

    , Science Advances, Vol: 9, ISSN: 2375-2548

    The life span of leaves increases with their mass per unit area (LMA). It is unclear why. Here, we show that this empirical generalization (the foundation of the worldwide leaf economics spectrum) is a consequence of natural selection, maximizing average net carbon gain over the leaf life cycle. Analyzing two large leaf trait datasets, we show that evergreen and deciduous species with diverse construction costs (assumed proportional to LMA) are selected by light, temperature, and growing-season length in different, but predictable, ways. We quantitatively explain the observed divergent latitudinal trends in evergreen and deciduous LMA and show how local distributions of LMA arise by selection under different environmental conditions acting on the species pool. These results illustrate how optimality principles can underpin a new theory for plant geography and terrestrial carbon dynamics.

  • Journal article
    Norman DL, Bischoff PH, Wearn OR, Ewers RM, Rowcliffe JM, Evans B, Sethi S, Chapman PM, Freeman Ret al., 2023,

    Can CNN-based species classification generalise across variation in habitat within a camera trap survey?

    , Methods in Ecology and Evolution, Vol: 14, Pages: 242-251, ISSN: 2041-210X

    Camera trap surveys are a popular ecological monitoring tool that produce vast numbers of images making their annotation extremely time-consuming. Advances in machine learning, in the form of convolutional neural networks, have demonstrated potential for automated image classification, reducing processing time. These networks often have a poor ability to generalise, however, which could impact assessments of species in habitats undergoing change.Here, we (i) compare the performance of three network architectures in identifying species in camera trap images taken from tropical forest of varying disturbance intensities; (ii) explore the impacts of training dataset configuration; (iii) use habitat disturbance categories to investigate network generalisability and (iv) test whether classification performance and generalisability improve when using images cropped to bounding boxes.Overall accuracy (72.8%) was improved by excluding the rarest species and by adding extra training images (76.3% and 82.8%, respectively). Generalisability to new camera locations within a disturbance level was poor (mean F1-score: 0.32). Performance across unseen habitat disturbance levels was worse (mean F1-score: 0.27). Training the network on multiple disturbance levels improved generalisability (mean F1-score on unseen disturbance levels: 0.41). Cropping images to bounding boxes improved overall performance (F1-score: 0.77 vs. 0.47) and generalisability (mean F1-score on unseen disturbance levels: 0.73), but at a cost of losing images that contained animals which the detector failed to detect.These results suggest researchers should consider using an object detector before passing images to a classifier, and an improvement in classification might be seen if labelled images from other studies are added to their training data. Composition of training data was shown to be influential, but including rarer classes did not compromise performance on common classes, providing support for the inclu

  • Journal article
    Ali JR, Blonder BW, Pigot AL, Tobias JAet al., 2023,

    Bird extinctions threaten to cause disproportionate reductions of functional diversity and uniqueness

    , FUNCTIONAL ECOLOGY, Vol: 37, Pages: 162-175, ISSN: 0269-8463
  • Journal article
    Zhu Z, Wang H, Harrison SP, Prentice IC, Qiao S, Tan Set al., 2023,

    Optimality principles explaining divergent responses of alpine vegetation to environmental change

    , Global Change Biology, Vol: 29, Pages: 126-142, ISSN: 1354-1013

    Recent increases in vegetation greenness over much of the world reflect increasing CO2 globally and warming in cold areas. However, the strength of the response to both CO2 and warming in those areas appears to be declining for unclear reasons, contributing to large uncertainties in predicting how vegetation will respond to future global changes. Here, we investigated the changes of satellite-observed peak season absorbed photosynthetically active radiation (Fmax) on the Tibetan Plateau between 1982 and 2016. Although climate trends are similar across the Plateau, we identified robust divergent responses (a greening of 0.31 ± 0.14% year−1 in drier regions and a browning of 0.12 ± 0.08% year−1 in wetter regions). Using an eco-evolutionary optimality (EEO) concept of plant acclimation/adaptation, we propose a parsimonious modelling framework that quantitatively explains these changes in terms of water and energy limitations. Our model captured the variations in Fmax with a correlation coefficient (r) of .76 and a root mean squared error of .12 and predicted the divergent trends of greening (0.32 ± 0.19% year−1) and browning (0.07 ± 0.06% year−1). We also predicted the observed reduced sensitivities of Fmax to precipitation and temperature. The model allows us to explain these changes: Enhanced growing season cumulative radiation has opposite effects on water use and energy uptake. Increased precipitation has an overwhelmingly positive effect in drier regions, whereas warming reduces Fmax in wetter regions by increasing the cost of building and maintaining leaf area. Rising CO2 stimulates vegetation growth by enhancing water-use efficiency, but its effect on photosynthesis saturates. The large decrease in the sensitivity of vegetation to climate reflects a shift from water to energy limitation. Our study demonstrates the potential of EEO approaches to reveal the

  • Journal article
    Stemkovski M, Bell JR, Ellwood ER, Inouye BD, Kobori H, Lee SD, Lloyd-Evans T, Primack RB, Templ B, Pearse WDet al., 2023,

    Disorder or a new order: How climate change affects phenological variability

    , ECOLOGY, Vol: 104, ISSN: 0012-9658
  • Journal article
    Shah T, Mashimba FH, Suleiman HO, Mbailwa YS, Savolainen V, Larridon I, Darbyshire Iet al., 2023,

    A taxonomic revision of the ecologically important<i> Ochna</i><i> holstii</i> (Ochnaceae) complex using molecular and morphological data

    , PLANT ECOLOGY AND EVOLUTION, Vol: 156, Pages: 174-200, ISSN: 2032-3913
  • Journal article
    Wang H, Harrison SP, Li M, Prentice IC, Qiao S, Wang R, Xu H, Mengoli G, Peng Y, Yang Yet al., 2022,

    The China plant trait database version 2

    , Scientific Data, Vol: 9, ISSN: 2052-4463

    Plant functional traits represent adaptive strategies to the environment, linked to biophysical and biogeochemical processes and ecosystem functioning. Compilations of trait data facilitate research in multiple fields from plant ecology through to land-surface modelling. Here we present version 2 of the China Plant Trait Database, which contains information on morphometric, physical, chemical, photosynthetic and hydraulic traits from 1529 unique species in 140 sites spanning a diversity of vegetation types. Version 2 has five improvements compared to the previous version: (1) new data from a 4-km elevation transect on the edge of Tibetan Plateau, including alpine vegetation types not sampled previously; (2) inclusion of traits related to hydraulic processes, including specific sapwood conductance, the area ratio of sapwood to leaf, wood density and turgor loss point; (3) inclusion of information on soil properties to complement the existing data on climate and vegetation (4) assessments and flagging the reliability of individual trait measurements; and (5) inclusion of standardized templates for systematical field sampling and measurements.

  • Journal article
    Malhi Y, Riutta T, Wearn OR, Deere NJ, Mitchell SL, Bernard H, Majalap N, Nilus R, Davies ZG, Ewers RM, Struebig MJet al., 2022,

    Logged tropical forests have amplified and diverse ecosystem energetics

    , Nature, Vol: 612, Pages: 707-713, ISSN: 0028-0836

    Old-growth tropical forests are widely recognized as being immensely important for their biodiversity and high biomass1. Conversely, logged tropical forests are usually characterized as degraded ecosystems2. However, whether logging results in a degradation in ecosystem functions is less clear: shifts in the strength and resilience of key ecosystem processes in large suites of species have rarely been assessed in an ecologically integrated and quantitative framework. Here we adopt an ecosystem energetics lens to gain new insight into the impacts of tropical forest disturbance on a key integrative aspect of ecological function: food pathways and community structure of birds and mammals. We focus on a gradient spanning old-growth and logged forests and oil palm plantations in Borneo. In logged forest there is a 2.5-fold increase in total resource consumption by both birds and mammals compared to that in old-growth forests, probably driven by greater resource accessibility and vegetation palatability. Most principal energetic pathways maintain high species diversity and redundancy, implying maintained resilience. Conversion of logged forest into oil palm plantation results in the collapse of most energetic pathways. Far from being degraded ecosystems, even heavily logged forests can be vibrant and diverse ecosystems with enhanced levels of ecological function.

  • Journal article
    Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Zanne AE, Chave J, Wright SJ, Sheremetiev SN, Jactel H, Baraloto C, Cerabolini BEL, Pierce S, Shipley B, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD, Amiaud B, Atkin OK, Bahn M, Baldocchi D, Beckmann M, Blonder B, Bond W, Bond-Lamberty B, Brown K, Burrascano S, Byun C, Campetella G, Cavender-Bares J, Chapin FS, Choat B, Coomes DA, Cornwell WK, Craine J, Craven D, Dainese M, de Araujo AC, de Vries FT, Domingues TF, Enquist BJ, Fagúndez J, Fang J, Fernández-Méndez F, Fernandez-Piedade MT, Ford H, Forey E, Freschet GT, Gachet S, Gallagher R, Green W, Guerin GR, Gutiérrez AG, Harrison SP, Hattingh WN, He T, Hickler T, Higgins SI, Higuchi P, Ilic J, Jackson RB, Jalili A, Jansen S, Koike F, König C, Kraft N, Kramer K, Kreft H, Kühn I, Kurokawa H, Lamb EG, Laughlin DC, Leishman M, Lewis S, Louault F, Malhado ACM, Manning P, Meir P, Mencuccini M, Messier J, Miller R, Minden V, Molofsky J, Montgomery R, Montserrat-Martí G, Moretti M, Müller S, Niinemets Ü, Ogaya R, Öllerer K, Onipchenko V, Onoda Y, Ozinga WA, Pausas JG, Peco B, Penuelas J, Pillar VD, Pladevall C, Römermann C, Sack L, Salinas N, Sandel B, Sardans J, Schamp B, Scherer-Lorenzen M, Schulze E-D, Schweingruber F, Shiodera S, Sosinski Ê, Soudzilovskaia N, Spasojevic MJ, Swaine E, Swenson N, Tautenhahn S, Thompson K, Totte A, Urrutia-Jalabert R, Valladares F, van Bodegom P, Vasseur F, Verheyen K, Vile D, Violle C, von Holle B, Weigelt P, Weiher E, Wiemann MC, Williams M, Wright J, Zotz Get al., 2022,

    The global spectrum of plant form and function: enhanced species-level trait dataset

    , Scientific Data, Vol: 9, Pages: 1-18, ISSN: 2052-4463

    Here we provide the 'Global Spectrum of Plant Form and Function Dataset', containing species mean values for six vascular plant traits. Together, these traits -plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass - define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date.

  • Journal article
    Buehne HST, Tobias JAA, Durant SMM, Pettorelli Net al., 2022,

    Indirect interactions between climate and cropland distribution shape fire size in West African grasslands

    , Landscape Ecology, Vol: 38, Pages: 1-16, ISSN: 0921-2973

    ContextClimate and land use changes often interact, yet our ability to predict their combined effects on biodiversity is currently limited. In particular, the combined effects of climate and land use on key ecosystem dynamics, such as disturbance regimes, that shape biodiversity across large spatial scales, are poorly understood.ObjectivesWe assess how indirect climate–land use interactions influence disturbance regimes by examining the mechanistic pathways by which climate and proximity to cropland interact to shape fire size in a West African grassland ecosystem, the W-Arly-Pendjari transboundary protected area complex.MethodsWe use remotely sensed indicators of burned area, rainfall, cropland distribution, and vegetation dynamics to test two spatially explicit hypotheses about the interaction between climate and land use effects on fire dynamics.ResultsWe demonstrate that in areas where wet season grass production (which is driven by rainfall) is higher, fires are larger, but that this relationship depends on the distance to cropland. Close to cropland, environmental drivers of fire size (wet season grass production, and progressive loss of fire fuel during the fire season) have little effect on fire size, as fuel breaks induced by cropland limit fire size.

  • Conference paper
    Waziri H, Kalaiarasan G, Wawman R, Hobbs F, Young G, Ransome E, Adcock I, Bhavsar P, Savolainen V, Porter A, Kumar P, Chung KFet al., 2022,

    Characterising SARS-CoV-2 transmission via aerosols and effective sampling methods for surveillance

    , 2022 ERS International Congress, Publisher: European Respiratory Society, ISSN: 0903-1936
  • Journal article
    Geci R, Willis K, Burt A, 2022,

    Gene drive designs for efficient and localisable population suppression using Y-linked editors

    , PLOS GENETICS, Vol: 18, ISSN: 1553-7404
  • Journal article
    Smith T, Mombrikotb S, Ransome E, Kontopoulos D, Pawar S, Bell Tet al., 2022,

    Latent functional diversity may accelerate microbial community responses to temperature fluctuations

    , eLife, Vol: 11, Pages: 1-22, ISSN: 2050-084X

    How complex microbial communities respond to climatic fluctuations remains an open question. Due to their relatively short generation times and high functional diversity, microbial populations harbor great potential to respond as a community through a combination of strain-level phenotypic plasticity, adaptation, and species sorting. However, the relative importance of these mechanisms remains unclear. We conducted a laboratory experiment to investigate the degree to which bacterial communities can respond to changes in environmental temperature through a combination of phenotypic plasticity and species sorting alone. We grew replicate soil communities from a single location at six temperatures between 4°C and 50°C. We found that phylogenetically and functionally distinct communities emerge at each of these temperatures, with K-strategist taxa favored under cooler conditions and r-strategist taxa under warmer conditions. We show that this dynamic emergence of distinct communities across a wide range of temperatures (in essence, community-level adaptation) is driven by the resuscitation of latent functional diversity: the parent community harbors multiple strains pre-adapted to different temperatures that are able to ‘switch on’ at their preferred temperature without immigration or adaptation. Our findings suggest that microbial community function in nature is likely to respond rapidly to climatic temperature fluctuations through shifts in species composition by resuscitation of latent functional diversity.

  • Journal article
    Simpson EG, Fraser I, Woolf H, Pearse WDet al., 2022,

    Variation in near-surface soil temperature drives plant assemblage insurance potential

    <jats:title>Abstract</jats:title><jats:p><jats:list list-type="order"><jats:list-item><jats:p>Studying how assemblages vary across environmental gradients provides a baseline for how assemblages may respond to climate change. Per the biological insurance hypothesis, assemblages with more variation in functional diversity will maintain ecosystem functions when species are lost. In complement, environmental heterogeneity supports landscape-scale ecosystem functionality (<jats:italic>i</jats:italic>.<jats:italic>e</jats:italic>. spatial insurance), when that variation includes environments with more abundant resources.</jats:p></jats:list-item><jats:list-item><jats:p>We use the relationship between vascular plant functional diversity and microenvironment to identify where assemblages are most likely to maintain functionality in a mountainous fieldsite in northeastern Utah, USA. We assessed how life history strategies and information about phylogenetic differences affect these diversity-environment relationships.</jats:p></jats:list-item><jats:list-item><jats:p>We found less functionally dispersed assemblages, that were shorter and more resource-conservative on hotter, more variable, south-facing slopes. In contrast, we found more functionally dispersed assemblages, that were taller and more resource-acquisitive on cooler, less variable, north-facing slopes. Herbaceous and woody perennials drove these trends. Additionally, including information about phylogenetic differences in a dispersion metric indicated that phylogeny accounts for traits we did not measure.</jats:p></jats:list-item><jats:list-item><jats:p><jats:italic>Synthesis</jats:italic>. At our fieldsite, soil temperature acts as an environmental filter across aspect. If soil temperature increases and becomes more variable, the function of north- vs. south-fac

  • Journal article
    Keller A, Ankenbrand MJ, Bruelheide H, Dekeyzer S, Enquist BJ, Erfanian MB, Falster DS, Gallagher R, Hammock J, Kattge J, Leonhardt SD, Madin JS, Maitner B, Neyret M, Onstein RE, Pearse WD, Poelen JH, Salguero-Gomez R, Schneider FD, Toth AB, Penone Cet al., 2022,

    Ten (mostly) simple rules to future-proof trait data in ecological and evolutionary sciences

    , METHODS IN ECOLOGY AND EVOLUTION, ISSN: 2041-210X
  • Journal article
    Burton VJ, Contu S, De Palma A, Hill SLL, Albrecht H, Bone JS, Carpenter D, Corstanje R, De Smedt P, Farrell M, Ford HV, Hudson LN, Inward K, Jones DT, Kosewska A, Lo-Man-Hung NF, Magura T, Mulder C, Murvanidze M, Newbold T, Smith J, Suarez AV, Suryometaram S, Tóthmérész B, Uehara-Prado M, Vanbergen AJ, Verheyen K, Wuyts K, Scharlemann JPW, Eggleton P, Purvis Aet al., 2022,

    Land use and soil characteristics affect soil organisms differently from above-ground assemblages

    , BMC Ecology and Evolution, Vol: 22, ISSN: 2730-7182

    Background:Land-use is a major driver of changes in biodiversity worldwide, but studies have overwhelmingly focused on above-ground taxa: the effects on soil biodiversity are less well known, despite the importance of soil organisms in ecosystem functioning. We modelled data from a global biodiversity database to compare how the abundance of soil-dwelling and above-ground organisms responded to land use and soil properties.Results:We found that land use affects overall abundance differently in soil and above-ground assemblages. The abundance of soil organisms was markedly lower in cropland and plantation habitats than in primary vegetation and pasture. Soil properties influenced the abundance of soil biota in ways that differed among land uses, suggesting they shape both abundance and its response to land use.Conclusions:Our results caution against assuming models or indicators derived from above-ground data can apply to soil assemblages and highlight the potential value of incorporating soil properties into biodiversity models.

  • Journal article
    Jaureguiberry P, Titeux N, Wiemers M, Bowler DE, Coscieme L, Golden AS, Guerra CA, Jacob U, Takahashi Y, Settele J, Diaz S, Molnar Z, Purvis Aet al., 2022,

    The direct drivers of recent global anthropogenic biodiversity loss

    , SCIENCE ADVANCES, Vol: 8, ISSN: 2375-2548
  • Journal article
    Fu Z, Ciais P, Feldman A, Gentine P, Makowski D, Prentice IC, Stoy PC, Bastos A, Wigneron J-Pet al., 2022,

    Critical soil moisture thresholds of plant water stress in terrestrial cosystems

    , Science Advances, Vol: 8, Pages: 1-12, ISSN: 2375-2548

    Plant water stress occurs at the point when soil moisture (SM) limits transpiration, defining a critical SM threshold (θcrit). Knowledge of the spatial distribution of θcrit is crucial for future projections of climate and water resources. Here, we use global eddy-covariance observations to quantify θcrit and evaporative fraction (EF) regimes. Three canonical variables describe how EF is controlled by SM: the maximum EF (EFmax), θcrit, and slope (S) between EF and SM. We find systematic differences of these three variables across biomes. Variation in θcrit, S, and EFmax is mostly explained by soil texture, vapor pressure deficit and precipitation, respectively, as well as vegetation structure. Dryland ecosystems tend to operate at low θcrit and show adaptation to water deficits. The negative relationship between θcrit and S indicates that dryland ecosystems minimize θcrit through mechanisms of sustained SM extraction and transport by xylem. Our results further suggest an optimal adaptation of local EF–SM response, that maximizes growing-season evapotranspiration and photosynthesis.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=562&limit=30&resgrpMemberPubs=true&page=4&respub-action=search.html Current Millis: 1711726082595 Current Time: Fri Mar 29 15:28:02 GMT 2024