Citation

BibTex format

@article{Trotta:2024:1538-4357/ad187d,
author = {Trotta, D and Larosa, A and Nicolaou, G and Horbury, TS and Matteini, L and Hietala, H and Blanco-Cano, X and Franci, L and Chen, CHK and Zhao, L and Zank, GP and Cohen, CMS and Bale, SD and Laker, R and Fargette, N and Valentini, F and Khotyaintsev, Y and Kieokaew, R and Raouafi, N and Davies, E and Vainio, R and Dresing, N and Kilpua, E and Karlsson, T and Owen, CJ and Wimmer-Schweingruber, RF},
doi = {1538-4357/ad187d},
journal = {The Astrophysical Journal},
pages = {147--147},
title = {Properties of an Interplanetary Shock Observed at 0.07 and 0.7 au by Parker Solar Probe and Solar Orbiter},
url = {http://dx.doi.org/10.3847/1538-4357/ad187d},
volume = {962},
year = {2024}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - <jats:title>Abstract</jats:title> <jats:p>The Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions opened a new observational window in the inner heliosphere, which is finally accessible to direct measurements. On 2022 September 5, a coronal mass ejection (CME)-driven interplanetary (IP) shock was observed as close as 0.07 au by PSP. The CME then reached SolO, which was radially well-aligned at 0.7 au, thus providing us with the opportunity to study the shock properties at different heliocentric distances. We characterize the shock, investigate its typical parameters, and compare its small-scale features at both locations. Using the PSP observations, we investigate how magnetic switchbacks and ion cyclotron waves are processed upon shock crossing. We find that switchbacks preserve their V–B correlation while compressed upon the shock passage, and that the signature of ion cyclotron waves disappears downstream of the shock. By contrast, the SolO observations reveal a very structured shock transition, with a population of shock-accelerated protons of up to about 2 MeV, showing irregularities in the shock downstream, which we correlate with solar wind structures propagating across the shock. At SolO, we also report the presence of low-energy (∼100 eV) electrons scattering due to upstream shocklets. This study elucidates how the local features of IP shocks and their environments can be very different as they propagate through the heliosphere.</jats:p>
AU - Trotta,D
AU - Larosa,A
AU - Nicolaou,G
AU - Horbury,TS
AU - Matteini,L
AU - Hietala,H
AU - Blanco-Cano,X
AU - Franci,L
AU - Chen,CHK
AU - Zhao,L
AU - Zank,GP
AU - Cohen,CMS
AU - Bale,SD
AU - Laker,R
AU - Fargette,N
AU - Valentini,F
AU - Khotyaintsev,Y
AU - Kieokaew,R
AU - Raouafi,N
AU - Davies,E
AU - Vainio,R
AU - Dresing,N
AU - Kilpua,E
AU - Karlsson,T
AU - Owen,CJ
AU - Wimmer-Schweingruber,RF
DO - 1538-4357/ad187d
EP - 147
PY - 2024///
SN - 0004-637X
SP - 147
TI - Properties of an Interplanetary Shock Observed at 0.07 and 0.7 au by Parker Solar Probe and Solar Orbiter
T2 - The Astrophysical Journal
UR - http://dx.doi.org/10.3847/1538-4357/ad187d
VL - 962
ER -