Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Valkova M, Anthony DB, Kucernak ARJ, Shaffer MSP, Greenhalgh ESet al., 2020,

    Predicting the compaction of hybrid multilayer woven composite reinforcement stacks

    , Composites Part A: Applied Science and Manufacturing, Vol: 133, ISSN: 1359-835X

    A meso-scale finite element modelling strategy was developed to investigate the effect of hybridisation on the compaction response of multilayer stacks combining glass and carbon dry woven fabrics. It is expected that the electrochemical-mechanical properties of emerging multifunctional hybrid composites are strongly dictated by the morphology of the compacted reinforcements, yet no investigations into their compressibility have been reported. Model predictions were evaluated against compressibility measurements for monolithic and hybrid fabric stacks. The ply offset had a major influence on the predicted internal morphologies and fibre content, contributing to experimental variability thereof. Optical microscopy and micro X-ray computed tomography imaging indicated greater likelihood of intermediate ply offsets in physical specimens, over limit case model idealisations. Compressibility was slightly reduced in the hybrid multilayer stacks studied in this work. The model outputs presented are being used to analyse the electrochemical-mechanical response of hybrid woven structural power composites.

  • Journal article
    Johannisson W, Nguyen S, Lindbergh G, Zenkert D, Greenhalgh E, Shaffer M, Kucernak Aet al.,

    A residual performance methodology to evaluate multifunctional systems

    , Multifunctional Materials
  • Journal article
    Nguyen S, Anthony DB, Qian H, Yue C, Singh A, Bismarck A, Shaffer MSP, Greenhalgh ESet al., 2019,

    Mechanical and physical performance of carbon aerogel reinforced carbon fibre hierarchical composites

    , Composites Science and Technology, Vol: 182, ISSN: 0266-3538

    Carbon aerogel (CAG) is a potential hierarchical reinforcement to improve the matrix-dominated mechanical properties of continuous carbon fibre reinforced polymer (CFRP) composites in both multifunctional and purely structural applications. When using CAG to reinforce a polyethylene glycol diglycidyl ether (PEGDGE) matrix, the interlaminar shear strength, compressive modulus and strength increased approximately four-fold, whilst the out-of-plane electrical conductivity increased by 118%. These mechanical and electrical performance enhancements significantly improve the multifunctional efficiency of composite structural supercapacitors, which can offer weight savings in transport and other applications. However, CAG also has the potential to reinforce conventional continuous CF composites in purely structural contexts. Here, CAG reinforcement of structural epoxy resin composites marginally increased compressive (1.4%) and tensile (2.7%) moduli respectively, but considerably reduced compressive, tensile and interlaminar shear strengths. Fractographic analysis shows that the reduced performance can be attributed to poor interfacial adhesion; in the future, alternative processing routes may resolve these issues to achieve advances in both moduli and strengths over conventional structural CFRPs.

  • Journal article
    Lee C, Greenhalgh E, Shaffer M, Panesar Aet al.,

    Optimized microstructures for multifunctional structural electrolytes

    , Multifuctional Materials, ISSN: 2399-7532

    Multifunctional structural materials offer compelling opportunities to realize highly efficient products. However, the need to fulfil disparate functions generates intrinsically conflicting physical property demands. One attractive strategy is to form a bi-continuous architecture of two disparate phases, each addressing a distinct physical property. For example, structural polymer electrolytes combine rigid and ion-conducting phases to deliver the required mechanical and electrochemical performance. Here, we present a general methodology, based on topology optimization, to identify optimal microstructures for particular design considerations. The numerical predictions have been successfully validated by experiments using 3D printed specimens. These architectures are directly relevant to multifunctional structural composites whilst the methodology can easily be extended to identify optimal microstructural designs for other multifunctional material embodiments.

  • Conference paper
    Lee C, Panesar A, Greenhalgh E,

    Design of optimised multi-scale structures for multifunctional composites

    , International conference on composite materials (ICCM-22)
  • Journal article
    Javaid A, Ho KKC, Bismarck A, Steinke JHG, Shaffer MSP, Greenhalgh ESet al., 2018,

    Improving the multifunctional behaviour of structural supercapacitors by incorporating chemically activated carbon fibres and mesoporous silica particles as reinforcement

    , JOURNAL OF COMPOSITE MATERIALS, Vol: 52, Pages: 3085-3097, ISSN: 0021-9983
  • Journal article
    Senokos E, Ou Y, Jose Torres J, Sket F, Gonzalez C, Marcilla R, Vilatela JJet al., 2018,

    Energy storage in structural composites by introducing CNT fiber/polymer electrolyte interleaves

    , SCIENTIFIC REPORTS, Vol: 8, ISSN: 2045-2322
  • Conference paper
    Anthony DB, bismarck A, blaker JJ, Qian H, Maples HA, Robinson P, Shaffer MSP, Greenhalgh ESet al., 2016,

    Development of novel composites through fibre and interface/interphase modification

    , 37th Risø International Symposium on Materials Science, Publisher: IOP, Pages: 012001-012001, ISSN: 1757-8981

    We show how fibre/matrix interface (or interphase) modification can be used to develop a range of novel carbon fibre reinforced polymer (CFRP) composites that open up new applications far beyond those of standard CFRPs. For example, composites that undergo pseudo-ductile failure have been created through laser treatment of carbon fibres. Composites manufactured with thermo-responsive interphases can undergo significant reductions in stiffness at elevated temperatures. Additionally, structural supercapacitors have been developed through a process that involves encapsulating carbon fibres in carbon aerogel.

  • Journal article
    Javaid A, Ho KKC, Bismarck A, Steinke JHG, Shaffer MSP, Greenhalgh ESet al., 2015,

    Carbon fibre-reinforced poly(ethylene glycol) diglycidylether based multifunctional structural supercapacitor composites for electrical energy storage applications

    , Journal of Composite Materials, Vol: 50, Pages: 2155-2163, ISSN: 1530-793X
  • Conference paper
    Qian H, Nguyen S, Anthony DB, Singh A, Xu S, Greenhalgh E, Bismarck A, Shaffer Met al., 2015,

    Stiff monolithic aerogel matrices for structural fibre composites

    , 20th International Conference on Composite Materials, Publisher: iccm-central.org

    Resorcinol-formaldehyde based aerogel precursors were infused into structural carbon fibreweaves, then gelled and carbonised to generate a continuous monolithic matrix network. Thishierarchical carbon preform was subsequently infused with polymeric resins, both multifunctional andstructural, to produce dense composites. The resulting hierarchical composites have a nanoscalereinforcement in the matrix at up to an order of magnitude higher loadings than typically available byother techniques. Compression, tension, ±45° shear and short beam tests demonstrate the potential ofsuch matrix systems to address matrix dominated failures. However, for the best structuralperformance it will be necessary to re-optimise the fibre-matrix interface, which is degraded by thecurrent processing regime.

  • Conference paper
    Greenhalgh ES, Shirshova N, Kucernak A, Shaffer MSP, Teixeira R, Bismarck A, Kireitseu M, Shelton Ret al., 2015,

    Recent advances in structural supercapacitors for transport applications

    © 2015 International Committee on Composite Materials. All rights reserved. Multifunctionality, in which secondary functions can be imbued onto structures, is leading to new opportunities to innovate and novel approaches to address the traditional challenges associated with adopting composites. This is leading to the development of truly multifunctional materials, in which the constituents (i.e. fibres and matrices) inherently have dual roles. The focus of this paper are structural power materials: structural composites which have the capacity to store and deliver electrical energy. This paper presents recent developments in structural supercapacitors, with particular focus on enhancing their specific electrical power. The specific electrical energy and power and ±45° in-plane shear modulus and strength of carbon fibre fabrics with and without CAG reinforcement were characterised. The matrix was a blend of a structural matrix (Cytec MTM® 57) and ionic liquid based electrolyte. Two separators were investigated: plain weave glass fibre (GF® 0902) and non-woven polyester veil (PM® 25). The specific energy and power of the CAG reinforced laminates demonstrated a considerable improvement over as-received carbon fibre fabrics which was attributed to optimisation of the microstructure of the electrode/separator interface. The laminates with glass fibre separators exhibited a superior shear modulus to the laminates with PM®25 separators due to the inferior mechanical properties of the PE veil. Similarly the CAG reinforcement significantly enhanced the modulus. Fractographic observations showed that for the non-CAG reinforced laminates the wetting between the carbon fibre electrode and glass fibre separator was inferior to that for the PM®25 separator. However, for the CAG reinforced laminates this trend was reversed, with the glass fibre separator exhibiting superior wetting, and hence a superior shear strength. However, further work is n

  • Journal article
    Greenhalgh ES, Ankersen J, Asp LE, Bismarck A, Fontana QPV, Houlle M, Kalinka G, Kucernak A, Mistry M, Nguyen S, Qian H, Shaffer MSP, Shirshova N, Steinke JHG, Wienrich Met al., 2014,

    Mechanical, electrical and microstructural characterisation of multifunctional structural power composites

    , Journal of Composite Materials, Vol: 49, Pages: 1823-1834, ISSN: 1530-793X
  • Journal article
    Asp LE, Greenhalgh ES, 2014,

    Structural power composites

    , COMPOSITES SCIENCE AND TECHNOLOGY, Vol: 101, Pages: 41-61, ISSN: 0266-3538
  • Journal article
    Javaid A, Ho KKC, Bismarck A, Shaffer MSP, Steinke JHG, Greenhalgh ESet al., 2014,

    Multifunctional structural supercapacitors for electrical energy storage applications

    , JOURNAL OF COMPOSITE MATERIALS, Vol: 48, Pages: 1409-1416, ISSN: 0021-9983
  • Journal article
    Shirshova N, Qian H, Houlle M, Steinke JHG, Kucernak ARJ, Fontana QPV, Greenhalgh ES, Bismarck A, Shaffer MSPet al., 2014,

    Multifunctional structural energy storage composite supercapacitors

    , FARADAY DISCUSSIONS, Vol: 172, Pages: 81-103, ISSN: 1359-6640
  • Journal article
    Qian H, Kucernak AR, Greenhalgh ES, Bismarck A, Shaffer MSPet al., 2013,

    Multifunctional Structural Supercapacitor Composites Based on Carbon Aerogel Modified High Performance Carbon Fiber Fabric

    , ACS APPLIED MATERIALS & INTERFACES, Vol: 5, Pages: 6113-6122, ISSN: 1944-8244
  • Journal article
    Qian H, Diao H, Shirshova N, Greenhalgh ES, Steinke JGH, Shaffer MSP, Bismarck Aet al., 2013,

    Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors

    , JOURNAL OF COLLOID AND INTERFACE SCIENCE, Vol: 395, Pages: 241-248, ISSN: 0021-9797
  • Conference paper
    Greenhalgh ES, Ankersen J, Asp LE, Bismarck A, Fontana QPV, Houlle M, Kalinka G, Kucernak A, Mistry M, Nguyen S, Qian H, Shaffer MSP, Shirshova N, Steinke JHG, Wienrich Met al., 2013,

    Mechanical and microstructural characterisation of multifunctional structural power composites

    , Pages: 2228-2237
  • Conference paper
    Qian H, Kucernak AR, Greenhalgh ES, Bismarck A, Shaffer MSPet al., 2013,

    Multifunctional structural power composites based on carbon aerogel modified high performance carbon fibre fabrics

    , Pages: 2238-2243
  • Conference paper
    Mistry M, Kucernak A, Nguyen S, Ankersen J, Greenhalgh ESet al., 2013,

    Addressing engineering issues for a composite structural power demonstrator

    , Pages: 2692-2700

    © QinetiQ Ltd 2013. Engineering issues have been addressed for a Multifunctional (MF) Carbon Fibre Reinforced Polymer (CFRP) capable of storing electrical energy and carrying mechanical load. The MF material was integrated into a technology demonstrator in the form of a car boot lid where the boot lighting was powered independently of the car main electrical system. Current collection was improved by using a thin copper mesh on the carbon electrodes while hole drilling was found to have a negligible effect on the laminate electrical performance.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1044&limit=20&page=1&respub-action=search.html Current Millis: 1591467016113 Current Time: Sat Jun 06 19:10:16 BST 2020