Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Sechi S, Giarola S, Lanzini A, Gandiglio M, Santarelli M, Oluleye G, Hawkes Aet al., 2021,

    A bottom-up appraisal of the technically installable capacity ofbiogas-based solid oxide fuel cells for self power generation in wastewatertreatment plants

    , Journal of Environmental Management, Vol: 279, Pages: 1-15, ISSN: 0301-4797

    This paper proposes a bottom-up method to estimate the technical capacity of solid oxide fuel cells to be installed in wastewater treatment plants and valorise the biogas obtained from the sludge through an efficient conversion into electricity and heat. The methodology uses stochastic optimisation on 200 biogas profile scenarios generated from industrial data and envisages a Pareto approach for an a posteriori assessment of the optimal number of generation unit for the most representative plant configuration sizes. The method ensures that the dominant role of biogas fluctuation is included in the market potential and guarantees that the utilization factor of the modules remains higher than 70% to justify the investment costs. Results show that the market potential for solid oxide fuel cells across Europe would lead up to 1,300 MW of installed electric capacity in the niche market of wastewater treatment and could initiate a capital and fixed costs reduction which could make the technology comparable with alternative combined heat and power solutions.

  • Journal article
    Nikas A, Gambhir A, Trutnevyte E, Koasidis K, Lund H, Thellufsen JZ, Mayer D, Zachmann G, Miguel LJ, Ferreras-Alonso N, Sognnaes I, Peters GP, Colombo E, Howells M, Hawkes A, van den Broek M, Van de Ven DJ, Gonzalez-Eguino M, Flamos A, Doukas Het al., 2021,

    Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe

    , Energy, Vol: 215, Pages: 1-8, ISSN: 0360-5442

    Europe’s capacity to explore the envisaged pathways that achieve its near- and long-term energy and climate objectives needs to be significantly enhanced. In this perspective, we discuss how this capacity is supported by energy and climate-economy models, and how international modelling teams are organised within structured communication channels and consortia as well as coordinate multi-model analyses to provide robust scientific evidence. Noting the lack of such a dedicated channel for the highly active yet currently fragmented European modelling landscape, we highlight the importance of transparency of modelling capabilities and processes, harmonisation of modelling parameters, disclosure of input and output datasets, interlinkages among models of different geographic granularity, and employment of models that transcend the highly harmonised core of tools used in model inter-comparisons. Finally, drawing from the COVID-19 pandemic, we discuss the need to expand the modelling comfort zone, by exploring extreme scenarios, disruptive innovations, and questions that transcend the energy and climate goals across the sustainability spectrum. A comprehensive and comprehensible multi-model framework offers a real example of “collective” science diplomacy, as an instrument to further support the ambitious goals of the EU Green Deal, in compliance with the EU claim to responsible research.

  • Journal article
    Oluleye G, Gandiglio M, Santarelli M, Hawkes Aet al., 2021,

    Pathways to commercialisation of biogas fuelled solid oxide fuel cells in European wastewater treatment plants

    , Applied Energy, Vol: 282, ISSN: 0306-2619

    Fuel cell developments are driven by the need for more efficient and cleaner energy provision; however, current costs make it uneconomic in wastewater treatment plants. Interventions via policy instruments and business models may be required for cost reduction until the fuel cell is driven purely by market forces. In this work a novel market potential assessment methodology is developed and applied to quantify the impact of various interventions on biogas fuelled solid oxide fuel cell cost reduction and synthesize pathways to its commercialisation. The method is applied to 6181 plants in 27 European countries. Results show that 71% cost reduction is required for a medium sized fuel cell to be market driven. Existing incentives can trigger cost reduction by 13–38% but are not able to sustain it until the fuel cell is market driven. Innovations in business models, and incentivising business models instead of technologies can trigger and sustain cost reduction. Results also show that under today’s high capital cost, the number of economically attractive plants required to install fuel cells are lowest when business models are incentivised compared to other interventions. Incentivising new business models to encourage innovation in the sector has more impact that incentivising technologies. The framework is also relevant for creating narratives around the commercialisation of new technologies.

  • Journal article
    Chu C-T, Hawkes AD, 2020,

    Optimal mix of climate-related energy in global electricity systems

    , Renewable Energy, Vol: 160, Pages: 955-963, ISSN: 0960-1481

    Existing studies on high renewable share electricity systems are usually based on least cost optimization. Running the related models can be time-consuming when space-time resolution is high. This study investigates the optimal mix of climate-related energies for most countries in the world with optimization models based on three criteria: cost, residual load variability, and portfolio output variability. The objectives of minimizing residual load variability and portfolio output variability are to ensure the overall complementarity of the generation portfolio, which may result in less conventional dispatchable units needed in a system. Compromise solutions based on the three objectives are proposed as the optimal mix. This method can produce solutions in acceptable modelling time, and considers the portfolio output characteristics which can make higher climate-related energy penetration more practical. The results show that the compromise solutions can effectively minimize the three objective values in most countries. The results also suggest that wind power is crucial in higher renewable share systems while solar power does not reach over 50% capacity share.

  • Journal article
    Gerber Machado P, Rodrigues Teixeira AC, Mendes de Almeida Collaço F, Hawkes A, Mouette Det al., 2020,

    Assessment of greenhouse gases and pollutant emissions in the road freight transport sector: a case study for São Paulo state, Brazil

    , Energies, Vol: 13, Pages: 5433-5433, ISSN: 1996-1073

    This study analyzes the road freight sector of São Paulo state to identify the best options to reduce greenhouse gases emissions and local pollutants, such as particulate matter, nitrogen oxides, carbon monoxide, and hydrocarbons. Additionally, the investment cost of each vehicle is also analyzed. Results show that electric options, including hybrid, battery, and hydrogen fuel-cell electric vehicles represent the best options to reduce pollutants and greenhouse gases emissions concomitantly, but considerable barriers for their deployment are still in place. With little long-term planning on the state level, electrification of the transport system, in combination with increased renewable electricity generation, would require considerable financial support to achieve the desired emissions reductions without increasing energy insecurity.

  • Journal article
    Sesini M, Giarola S, Hawkes AD, 2020,

    The impact of liquefied natural gas and storage on the EU natural gas infrastructure resilience

    , Energy, Vol: 209, Pages: 1-13, ISSN: 0360-5442

    As the energy system progresses towards full decarbonization, natural gas could play an important role in it with its relatively low carbon characteristics and its abundant supply. At the core of the paper is a modelling analysis of the European Union (EU) natural gas network resilience in case of short-term supply disruption or unexpected increase in demand. The adopted linear programming model solves for the most cost effective transmission of gas flows, capacity and storage utilization in an interconnected EU gas system. Results presented in the paper show a significant increase in liquefied natural gas (LNG) costs (+40%) when commodity price increases (+40%) and LNG prices decreases (−20%), and an equally significant decline in transport and LNG costs (−30%,-50%) when storage volumes varies (−35%,+35%).The analysis highlights a complementary role between LNG and storage in ensuring a cost-effective response to a natural gas supply shock. It also indicates that LNG alone is inadequate in providing system resilience in case of an emergency in supply, stressing the importance of storage in the gas market and its intrinsic value in the system. The study emphasizes the need to further investigate the reliability and value of gas storage to reinforce energy security in Europe.

  • Journal article
    Budinis S, Sachs J, Giarola S, Hawkes Aet al., 2020,

    An agent-based modelling approach to simulate the investment decision of industrial enterprises

    , Journal of Cleaner Production, Vol: 267, ISSN: 0959-6526

    China is the leading ammonia producer and relies on a coal-based technology which makes the already energy intensive Haber-Bosch process, one of the most emission intensive in the world. This work is the first to propose an agent-based modelling framework to model the Chinese ammonia industry as it characterises the specific goals and barriers towards fuel switching and carbon capture and storage adoption for small, medium, and large enterprises either private or state-owned. The results show that facilitated access to capital makes investments in sustainable technologies more attractive for all firms, especially for small and medium enterprises. Without policy instruments such as carbon price, the decrease in emissions in the long-term is due to investments in natural gas-based technologies, as they typically have lower capital and operating costs, and also lower electricity consumption than coal-based production. Conversely, with policy instruments in place, a strong decrease in emissions occurs between 2060 and 2080 due to investors choosing natural gas and biomethane-based technologies, with carbon capture and storage. In the long term, natural gas and biomethane could compete, with the outcome depending on infrastructure, supply chain availability and land use constraints.

  • Journal article
    Moya D, Budinis S, Giarola S, Hawkes Aet al., 2020,

    Agent-based scenarios comparison for assessing fuel-switching investment in long-term energy transitions of the India’s industry sector

    , Applied Energy, Vol: 274, Pages: 1-26, ISSN: 0306-2619

    This paper presents the formulation and application of a novel agent-based integrated assessment approach to model the attributes, objectives and decision-making process of investors in a long-term energy transition in India’s iron and steel sector. It takes empirical data from an on-site survey of 108 operating plants in Maharashtra to formulate objectives and decision-making metrics for the agent-based model and simulates possible future portfolio mixes. The studied decision drivers were capital costs, operating costs (including fuel consumption), a combination of capital and operating costs, and net present value. Where investors used a weighted combination of capital cost and operating costs, a natural gas uptake of ~12PJ was obtained and the highest cumulative emissions reduction was obtained, 2 Mt CO2 in the period from 2020 to 2050. Conversely if net present value alone is used, cumulative emissions reduction in the same period was lower, 1.6 Mt CO2, and the cumulative uptake of natural gas was equal to 15PJ. Results show how the differing upfront investment cost of the technology options could cause prevalence of high-carbon fuels, particularly heavy fuel oil, in the final mix. Results also represent the unique heterogeneity of fuel-switching industrial investors with distinct investment goals and limited foresight on costs. The perception of high capital expenditures for decarbonisation represents a significant barrier to the energy transition in industry and should be addressed via effective policy making (e.g. carbon policy/price).

  • Journal article
    Garcia Kerdan I, Giarola S, Hawkes A, 2020,

    Implications of future natural gas demand on sugarcane production, land use Change and related emissions in Brazil

    , Journal of Sustainable Development of Energy, Water and Environment Systems, Vol: 8, Pages: 304-327, ISSN: 1848-9257

    Due to its low share of energy-related emissions, energy systems models have overlooked the implications of technological transition in the agricultural sector and its interaction in the wider energy system. This paper explores the role of agriculture intensification by using a novel agricultural-based energy systems model. The aim is to explore the future role of Brazil’s agriculture and its dynamics with other energy sectors under two carbon constraint scenarios. The main focus has been to study resource competition between sugarcane and natural gas at a country level. Results show that in order to meet the future food and bioenergy demand, the agricultural sector would start intensifying by 2030, improving productivity at the expense of higher energy demand, however, land-related emissions would be minimised due to freed-up pasture land and reduction in deforestation rates. Additionally, the development of balanced bioenergy and natural gas markets may help limit the sugarcane expansion rates, preserving up to 12.6 million hectares of forest land, with significant emissions benefits.

  • Journal article
    Lyrio de Oliveira L, García Kerdan I, de Oliveira Ribeiro C, Oller do Nascimento CA, Rego EE, Giarola S, Hawkes Aet al., 2020,

    Modelling the technical potential of bioelectricity production under land use constraints: A multi-region Brazil case study

    , Renewable and Sustainable Energy Reviews, Vol: 123, Pages: 1-15, ISSN: 1364-0321

    In Brazil, bioelectricity generation from sugarcane bagasse and black liquor is regarded as a sustainable electricity supply option. However, questions regarding land use, investment decisions, and demand for paper, ethanol and sugar make its future role uncertain. The aim of this paper is to present a novel modelling framework based on a soft-link between a multi-sectoral Brazilian integrated assessment model (MUSE-Brazil) and an electricity portfolio optimisation model (EPOM). The proposed framework is capable of dynamically simulating sectoral electricity demand, regional bioenergy production under land use constraints and optimal power sector technological shares in each of the electricity subsystems. Considering Brazil under a 2 °C carbon budget, two scenarios based on economic attractiveness of producing second-generation ethanol have been investigated. Under the scenario where second-generation ethanol is not produced, outputs indicate that by 2050, Brazil would increase sugarcane and wood production by 68% and 49% respectively without causing direct or indirect deforestation. Agriculture intensification is evidenced as an alternative for reducing land use disruptions. Bioelectricity share is projected to remain around 9–10%. However, if second generation ethanol becomes cost-effective, thus limiting bagasse availability, the share of bioelectricity production would decrease to approximately 7.7%, with natural gas-fired plants playing a stronger role in the future power system expansion, causing an increase on electricity sector emissions.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1180&limit=10&respub-action=search.html Current Millis: 1638329261879 Current Time: Wed Dec 01 03:27:41 GMT 2021