The publication feed below is often incomplete and out of date; for an up to date summary of our publications please see Google Scholar or Pub Med

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Lovell S, Sutherell CL, Tate EW, 2019,

    Chemical probes for proteins and networks

    , Pages: 127-158

    Chemical probes are small molecules with well-defined, selective biological activity and good physiochemical properties and have become important tools for probing fundamental biology and disease. After outlining the breadth of applications in the field of chemical proteomics, this chapter describes two key technologies applied within the group: metabolically incorporated probes for global profiling of protein networks and tagged probes for target identification and profiling. Despite the variety of uses of chemical probes, there are important common features regarding probe design, validation, and application. The exemplars cover the use of metabolically incorporated chemical probes for the global profiling of lipidated protein networks and probes to aid the unbiased identification of the targets of small molecules. The chapter outlines a typical protocol for an experimental setup commonly used in the lab with the N-myristoylation metabolic probe YnMyr.

  • Journal article
    Furniss RCD, Low WW, Mavridou DAI, Dagley LF, Webb AI, Tate E, Clements Aet al., 2018,

    Plasma membrane profiling during enterohemorrhagic E. coli infection reveals that the metalloprotease StcE cleaves CD55 from host epithelial surfaces

    , Journal of Biological Chemistry, Vol: 293, Pages: 17188-17199, ISSN: 0021-9258

    Enterohemorrhagic Escherichia coli (EHEC) is one of several E. coli pathotypes that infect the intestinal tract and cause disease. Formation of the characteristic attaching and effacing (A/E) lesion on the surface of infected cells causes significant remodelling of the host cell surface, however limited information is available about changes at the protein level. Here we employed "plasma membrane profiling", a quantitative cell-surface proteomics technique, to identify host proteins whose cell-surface levels are altered during infection. Using this method, we quantified more than 1100 proteins, 280 of which showed altered cell-surface levels after exposure to EHEC. 22 host proteins were significantly reduced on the surface of infected epithelial cells. These included both known and unknown targets of EHEC infection. The complement decay-accelerating factor CD55 exhibited the greatest reduction in cell surface levels during infection. We showed by flow cytometry and Western blot analysis that CD55 is cleaved from the cell surface by the EHEC-specific protease StcE, and found that StcE-mediated CD55 cleavage results in increased neutrophil adhesion to the apical surface of intestinal epithelial cells. This suggests that StcE alters host epithelial surfaces to depress neutrophil transepithelial migration during infection. This work is the first report of the global manipulation of the epithelial cell surface by a bacterial pathogen and illustrates the power of quantitative cell-surface proteomics in uncovering critical aspects of bacterial infection biology.

  • Journal article
    Wang Z, Grosskurth SE, Cheung T, Petteruti P, Zhang J, Wang X, Wang W, Gharahdaghi F, Wu J, Su N, Howard RT, Mayo M, Widzowski D, Scott DA, Johannes JW, Lamb ML, Lawson D, Dry JR, Lyne PD, Tate EW, Zinda M, Mikule K, Fawell SE, Reimer C, Chen Het al., 2018,

    Pharmacological inhibition of PARP6 triggers multipolar spindle formation and demonstrates therapeutic effects in breast cancer

    , Cancer Research, Vol: 78, Pages: 6691-6702, ISSN: 1538-7445

    PARP proteins represent a class of post-translational modification enzymes with diverse cellular functions. Targeting PARPs has proven to be efficacious clinically, but exploration of the therapeutic potential of PARP inhibition has been limited to targeting poly(ADP-ribose) generating PARP, including PARP1/2/3 and tankyrases. The cancer-related functions of mono(ADP-ribose) generating PARP, including PARP6, remain largely uncharacterized. Here, we report a novel therapeutic strategy targeting PARP6 using the first reported PARP6 inhibitors. By screening a collection of PARP compounds for their ability to induce mitotic defects, we uncovered a robust correlation between PARP6 inhibition and induction of multipolar spindle (MPS) formation, which was phenocopied by PARP6 knockdown. Treatment with AZ0108, a PARP6 inhibitor with a favorable pharmacokinetic profile, potently induced the MPS phenotype, leading to apoptosis in a subset of breast cancer cells in vitro and antitumor effects in vivo. In addition, Chk1 was identified as a specific substrate of PARP6 and was further confirmed by enzymatic assays and by mass spectrometry. Furthermore, when modification of Chk1 was inhibited with AZ0108 in breast cancer cells, we observed marked upregulation of p-S345 Chk1 accompanied by defects in mitotic signaling. Together, these results establish proof-of-concept antitumor efficacy through PARP6 inhibition and highlight a novel function of PARP6 in maintaining centrosome integrity via direct ADP-ribosylation of Chk1 and modulation of its activity.

  • Journal article
    De Vita E, Schuler P, Lovell S, Lohbeck J, Kullmann S, Rabinovich E, Sananes A, Hessling B, Hamon V, Papo N, Hess J, Tate EW, Gunkel N, Miller AKet al., 2018,

    Depsipeptides Featuring a Neutral P1 Are Potent Inhibitors of Kallikrein-Related Peptidase 6 with On-Target Cellular Activity

    , JOURNAL OF MEDICINAL CHEMISTRY, Vol: 61, Pages: 8859-8874, ISSN: 0022-2623
  • Journal article
    Benns HJ, Tate EW, Child MA, 2018,

    Activity-Based Protein Profiling for the Study of Parasite Biology.

    , Curr Top Microbiol Immunol, Vol: 420, Pages: 155-174, ISSN: 0070-217X

    Parasites exist within most ecological niches, often transitioning through biologically and chemically complex host environments over the course of their parasitic life cycles. While the development of technologies for genetic engineering has revolutionised the field of functional genomics, parasites have historically been less amenable to such modification. In light of this, parasitologists have often been at the forefront of adopting new small-molecule technologies, repurposing drugs into biological tools and probes. Over the last decade, activity-based protein profiling (ABPP) has evolved into a powerful and versatile chemical proteomic platform for characterising the function of enzymes. Central to ABPP is the use of activity-based probes (ABPs), which covalently modify the active sites of enzyme classes ranging from serine hydrolases to glycosidases. The application of ABPP to cellular systems has contributed vastly to our knowledge on the fundamental biology of a diverse range of organisms and has facilitated the identification of potential drug targets in many pathogens. In this chapter, we provide a comprehensive review on the different forms of ABPP that have been successfully applied to parasite systems, and highlight key biological insights that have been enabled through their application.

  • Journal article
    Beard R, Singh N, Grundschober C, Gee AD, Tate EWet al., 2018,

    High-yielding 18F radiosynthesis of a novel oxytocin receptor tracer, a probe for nose-to-brain oxytocin uptake in vivo

    , Chemical Communications, Vol: 54, Pages: 8120-8123, ISSN: 1359-7345

    A novel Al18F labelled peptide tracer for PET imaging of oxytocin receptor has been accessed through a high radiochemical yield approach. This tracer showed comparable affinity and higher selectivity and stability compared to oxytocin, and was used to demonstrate direct nose-to-brain uptake following intranasal administration, a common yet controversial delivery route for oxytocin-based therapeutics.

  • Journal article
    Beard R, Stucki A, Schmitt M, Py G, Grundschober C, Gee A, Tate EWet al., 2018,

    Building bridges for highly selective, potent and stable oxytocin and vasopressin analogs

    , Bioorganic and Medicinal Chemistry, Vol: 26, Pages: 3039-3045, ISSN: 0968-0896

    Oxytocin (OT) is an exciting potential therapeutic agent, but it is highly sensitive to modification and suffers extensive degradation at elevated temperature and in vivo. Here we report studies towards OT analogs with favorable selectivity, affinity and potency towards the oxytocin receptor (OTR), in addition to improving stability of the peptide by bridging the disulfide region with substituted dibromo-xylene analogs. We found a sensitive structure-activity relationship in which meta-cyclized analogs (dOTmeta) gave highest affinity (50 nM Ki), selectivity (34-fold), and agonist potency (34 nM EC50, 87-fold selectivity) towards OTR. Surprisingly, ortho-cyclized analogs demonstrated OTR and vasopressin V1a receptor subtype affinity (220 nM and 69 nM, respectively) and pharmacological activity (294 nM and 35 nM, respectively). V1a binding and selectivity for ortho-cyclized peptides could be improved 6-fold by substituting a neutral residue at position 8 with a basic amino acid, providing potent antagonists (14 nM IC50) that displayed no activation of the OTR. Furthermore, xylene-bridged analogs demonstrated increased stability compared to OT at elevated temperature, demonstrating promising therapeutic potential for these analogs which warrants further study.

  • Conference paper
    Riviere F, Dian C, Perez-Dorado I, Ritzefeld M, Shen J, Cota E, Meinnel T, Tate EW, Giglione Cet al., 2018,

    Mechanistic insight into HsNMT1-mediated acylation

    , Publisher: WILEY, Pages: 421-422, ISSN: 2211-5463
  • Conference paper
    Tate EW, 2018,

    Protein N terminal modifications: from chemical biology to drug discovery

    , Publisher: WILEY, Pages: 72-73, ISSN: 2211-5463
  • Journal article
    Mousnier A, Bell AS, Swieboda DP, Morales-Sanfrutos J, Pérez-Dorado I, Brannigan JA, Newman J, Ritzefeld M, Hutton JA, Guedán A, Asfor AA, Robinson SW, Hopkins-Navratilova I, Wilkinson AJ, Johnston SL, Leatherbarrow RJ, Tuthill TJ, Solari R, Tate EWet al., 2018,

    Fragment-derived inhibitors of human N-myristoyltransferase block capsid assembly and replication of the common cold virus

    , Nature Chemistry, Vol: 10, Pages: 599-606, ISSN: 1755-4330

    Rhinoviruses are the pathogens most often responsible for the common cold, and are a frequent cause of exacerbations in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Here we report discovery of IMP-1088, a picomolar dual inhibitor of the human N-myristoyltransferases NMT1 and NMT2, and use it to demonstrate that pharmacological inhibition of host cell N-myristoylation rapidly and completely prevents rhinoviral replication without inducing cytotoxicity. Identification of cooperative binding between weak-binding fragments led to rapid inhibitor optimization through fragment reconstruction, structure-guided fragment linking, and conformational control over linker geometry. We show that inhibition of co-translational myristoylation of a specific virus-encoded protein (VP0) by IMP-1088 potently blocks a key step in viral capsid assembly, delivering low nanomolar antiviral activity against multiple rhinovirus strains, poliovirus and foot-and-mouth disease virus, and protection of cells against virus-induced killing, highlighting the potential of host myristoylation as a drug target in picornaviral infections.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=870&limit=10&page=6&respub-action=search.html Current Millis: 1638406330749 Current Time: Thu Dec 02 00:52:10 GMT 2021