Many Tribology Group publications are Open Access thanks to funding from the EPSRC.

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Book chapter
    Ewen J, Ramos Fernandez E, Smith E, Dini Det al., 2020,

    Nonequilibrium Molecular Dynamics Simulations of Tribological Systems

    , Modeling and Simulation of Tribological Problems in Technology, Editors: Paggi, Hills, Publisher: Springer Nature, Pages: 95-130, ISBN: 978-3-030-20376-4
  • Book chapter
    Putignano C, Dini D, 2020,

    Contact Mechanics of Rubber and Soft Matter

    , Modeling and Simulation of Tribological Problems in Technology, Editors: Paggi, Hills, Publisher: Springer Nature, ISBN: 978-3-030-20376-4
  • Journal article
    Knight C, O'Sullivan C, Dini D, Van Wachem Bet al., 2020,

    Computing drag and interactions between fluid and polydisperse particles in saturated granular materials

    , Computers and Geotechnics, Vol: 117, Pages: 1-16, ISSN: 0266-352X

    Fundamental numerical studies of seepage induced geotechnical instabilities and filtration processes depends on accurate prediction of the forces imparted on the soil grains by the permeating fluid. Hitherto coupled Discrete Element Method (DEM) simulations documented in geomechanics have most often simulated the fluid flow using computational fluid dynamics (CFD) models employing fluid cells that contain a number of particles. Empirical drag models are used to predict the fluid-particle interaction forces using the flow Reynolds number and fluid cell porosity. Experimental verification of the forces predicted by these models at the particle-scale is non-trivial. This contribution uses a high resolution immersed boundary method to model the fluid flow within individual voids in polydisperse samples of spheres to accurately determine the fluid-particle interaction forces. The existing drag models are shown to poorly capture the forces on individual particles in the samples for flow with low Reynolds number values. An alternative approach is proposed in which a radical Voronoi tesselation is applied to estimate a local solids volume fraction for each particle; this local solids fraction can be adopted in combination with existing expressions to estimate the drag force. This tessellation-based approach gives a more accurate prediction of the fluid particle interaction forces.

  • Journal article
    Ueda M, Kadiric A, Spikes H, 2019,

    On the crystallinity and durability of ZDDP tribofilm

    , Tribology Letters, Vol: 67, Pages: 1-13, ISSN: 1023-8883

    The current trend for using lower-viscosity lubricants with the aim of improving fuel economy of mechanical systems means that machine components are required to operate for longer periods in thin oil film, mixed lubrication conditions, where the risk of surface damage is increased. Consequently, the performance and durability of the tribofilms formed by antiwear additives, and in particular zinc dialkyldithiophosphate (ZDDP), the main antiwear oil additive used in engine oils, has become an increasingly important issue. In this paper, it is confirmed that ZDDP tribofilms are initially relatively easily removed by rubbing but that they become more durable during prolonged rubbing. FIB-TEM analyses at different stages of tribofilm formation show that during the early stages of rubbing only the tribofilm close to the steel substrate is nanocrystalline, while the outer region is amorphous and easily removed. However, after prolonged rubbing all regions of the tribofilm become nanocrystalline and able to withstand rubbing in base oil without being removed. XPS analysis shows that after extended rubbing the outermost polyphosphate structures change from longer-chain structures such as metaphosphate and polyphosphate to shorter-chain structures including orthophosphate. This depolymerization of ZDDP tribofilm from long- to short-chain phosphate and consequent nanocrystallization are driven by heat and shear stress. EDX analysis shows that this conversion is promoted by diffusion of Fe cation into the bulk of the tribofilm. The finding that ZDDP tribofilms evolve during rubbing from a weaker amorphous structure to a more durable nanocrystalline one has important implications in terms of the behaviour of ZDDPs at low concentrations, on non-metallic surfaces and at very high contact pressures, as well as for the development of ZDDP tribofilm, friction and wear models.

  • Journal article
    Dawczyk J, Russo J, Spikes H, 2019,

    Ethoxylated amine friction modifiers and ZDDP

    , Tribology Letters, Vol: 67, ISSN: 1023-8883

    The influence of a series of Ethomeens (ethoxylated alkylamine organic friction modifiers) on the durability and friction of tribofilms formed by a commercial blend of primary and secondary ZDDP in sliding/rolling contact has been studied. When pre-formed ZDDP tribofilms are rubbed in Ethomeen solution, boundary friction is reduced and some of the ZDDP film is removed. Ethomeens having just two ethoxy groups give lower boundary friction on ZDDP than those with 15 ethoxy groups, but result in much greater removal of the tribofilm itself. Based on XANES analysis, the film removed by both types of Ethomeen consists primarily of nanocrystalline orthophosphate. The level of boundary friction and its dependence on sliding speed, coupled with the dimensions of the molecules, suggests that the Ethomeens with two ethoxy groups may form quite closely packed vertical monolayers on ZDDP tribofilm surfaces, but that those with fifteen ethoxy groups cannot be close packed; yet they still reduce boundary friction significantly. The study shows that selection of an appropriate aminic friction modifier for use with ZDDP is a balance between its ability to reduce friction and its potentially harmful effect on a ZDDP tribofilm.

  • Journal article
    Menga N, Carbone G, Dini D, 2019,

    Corrigendum to “Do uniform tangential interfacial stresses enhance adhesion?” [Journal of the Mechanics and Physics of Solids 112 (2018) 145–156]

    , Journal of the Mechanics and Physics of Solids, Vol: 133, Pages: 103744-103744, ISSN: 0022-5096
  • Journal article
    Heyes DM, Dini D, Costigliola L, Dyre JCet al., 2019,

    Transport coefficients of the Lennard-Jones fluid close to the freezing line

    , The Journal of Chemical Physics, Vol: 151, Pages: 204502-204502, ISSN: 0021-9606
  • Journal article
    Smith E, Trevelyan D, Ramos-Fernandez E, Sufian A, O'Sullivan C, Dini Det al., 2019,

    CPL library - a minimal framework for coupled particle and continuum simulation

    , Computer Physics Communications, ISSN: 0010-4655

    We present an open-source library for coupling particle codes, such as molecular dynamics (MD) or the discrete element method (DEM), and grid based computational fluid dynamics (CFD). The application is focused on domain decomposition coupling, where a particle and continuum software model different parts of a single simulation domain with information exchange. This focus allows a simple library to be developed, with core mapping and communication handled by just four functions. Emphasis is on scaling on supercomputers, a tested cross-language library, deployment with containers and well-documented simple examples. Building on this core, a template is provided to facilitate the user development of common features for coupling, such as averaging routines and functions to apply constraint forces. The interface code for LAMMPS and OpenFOAM is provided to both include molecular detail in a continuum solver and model fluids flowing through a granular system. Two novel development features are highlighted which will be useful in the development of the next generation of multi-scale software: (i) The division of coupled code into a smaller blocks with testing over a range of processor topologies. (ii) The use of coupled mocking to facilitate coverage of various parts of the code and allow rapid prototyping. These two features aim to help users develop coupled models in a test-driven manner and focus on the physics of the problem instead of just software development. All presented code is open-source with detailed documentation on the dedicated website ( permitting useful aspects to be evaluated and adopted in other projects.

  • Journal article
    Dini D, Menga N, Carbone G, 2019,

    Tuning the periodic V-peeling behavior of elastic tapes applied to thin compliant substrates

    , International Journal of Mechanical Sciences, ISSN: 0020-7403
  • Journal article
    Costa H, Spikes H, 2019,

    Interactions of ethanol with friction modifiers in model engine lubricants

    , Lubricants, Vol: 7, ISSN: 2075-4442

    When employed as an engine fuel, ethanol can accumulate in the lubricant during use. Previous work has shown that ethanol contamination affects friction and elastohydrodynamic lubrication (EHL) film formation, and also the growth and stability of anti-wear tribofilms. The present work uses spacer-layer ultrathin interferometry and MTM tests to investigate how ethanol (both hydrated and anhydrous) interacts with friction modifiers in model lubricants. Small proportions (5 wt %) of ethanol were added to solutions of friction modifiers (one MoDTC and three organic friction modifiers) in a Group I base oil. For the three organic friction modifiers, the presence of ethanol promoted the formation of thick viscous boundary films so that very low friction coefficients were measured at low entrainment speeds. For the MoDTC additive, the presence of ethanol prevented the formation of a low friction film at low speeds at 70 °C, but this effect disappeared at 100 °C, probably due to ethanol evaporation.

  • Journal article
    Fry B, Moody G, Spikes H, Wong Jet al.,

    Effect of surface cleaning on performance of organic friction modifiers

    , Tribology Transactions, ISSN: 1040-2004

    The performance of surface active additives, such as friction modifiers, depends on their interactions with surfaces. Their effectiveness thus hinges upon the surface conditions. In this work, the effect of cleaning methods of test substrates on the friction reduction capabilities of different organic friction modifier (OFM) additives was investigated. 52100 steel discs and balls were the test specimens. They were cleaned in five different ways. The cleaned surfaces were characterised by using ellipsometry and atomic force microscopy. The tribological performance of stearic acid (STA), octadecylamine (ODA) and octadecanol (ODO) on these surfaces were then tested. As-received steel surfaces were covered with contaminants which may impede the formation of OFM surface layer. Cleaning these surfaces with solvents cannot completely removed these contaminants, with residue layers remain. Cleaning with oxygen or argon plasma results in cleaner surfaces as compared to those cleaned by solvents only. The impact of the choice of cleaning methods on friction depends on the strength of the interaction between the OFM and the steel surface, which determines the ability of an OFM to displace surface contaminations. Cleaner surfaces result in lower initial friction for STA and ODA. Steady state friction is also affected, but to a smaller extent. It may be because most containments remained in the wear track are mechanically removed during rubbing.

  • Journal article
    Gouda K, Rycerz P, Kadiric A, Morales-Espejel Get al., 2019,

    Assessing the effectiveness of data-driven time-domain condition indicators in predicting the progression of surface distress under rolling contact

    , Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol: 233, Pages: 1523-1540, ISSN: 1350-6501

    Condition monitoring of machine health via analysis of vibration, acoustic and other signals offers an important tool for reducing the machine downtime and maintenance costs. The key aspect in this process is the ability to relate features derived from the recorded sensor signals to the physical condition of the monitored asset in real time. This paper uses simple machine learning techniques to examine the ability of specific time-domain features obtained from vibration signals to predict the progression of surface distress in lubricated, rolling-sliding contacts, such as those found in rolling bearings and gears. Controlled experiments were performed on a triple-disc rolling contact fatigue rig using seeded-fault roller specimens where micropitting damage was generated and its progression directly observed over millions of contact cycles. Vibration signals were recorded throughout the experiments. Features known as condition indicators were then extracted from the recorded time-domain signals and their evolution related to the observed physical state of the associated specimens using simple machine learning techniques. Five time-domain condition indicators were examined, peak-to-peak, root-mean-square, kurtosis, crest factor and skewness, three of which were found not to be redundant. First, a classification model using KNN nearest neighbor was built with the three informative condition indicators as training data. The cross-validation results indicated that this classifier was able to predict the presence of micropitting damage with a relatively high precision and a low rate of false positives. Secondly, a k-means clustering analysis was performed to measure the significance of each condition indicator by leveraging patterns. The peak-to-peak condition indicator was found to be a good predictor for progression of micropitting damage. In addition, this indicator was able to distinguish between micropitting and pitting failure modes with a high success rate. Finally

  • Journal article
    Ueda M, Spikes H, Kadiric A, 2019,

    In-situ observations of the effect of the ZDDP tribofilm growth on micropitting

    , Tribology International, Vol: 138, Pages: 342-352, ISSN: 0301-679X

    The ongoing trend for using ever lower viscosities of lubricating oils, with the aim of improving the efficiency of mechanical systems, means that machine components are required to operate for longer periods under thin film, mixed lubrication conditions where the risk of surface damage is increased. For this reason, the role of zinc dialkyldithiophosphate (ZDDP) antiwear lubricant additive has become increasingly important in order to provide adequate surface protection. It is known that due to its exceptional effectiveness in reducing surface wear, ZDDP may promote micropitting by preventing adequate running-in of the contacting surfaces. However, the relationship between ZDDP tribofilm growth rate and the evolution of micropitting has not been directly demonstrated. To address this, we report the development of a novel technique using MTM-SLIM to obtain micropitting and observe ZDDP tribofilm growth in parallel throughout a test. This is then applied to investigate the effect of ZDDP concentration and type on micropitting.It is found that oils with higher ZDDP concentrations produce more micropitting but less surface wear and that, at a given concentration, a mixed primary-secondary ZDDP results in more severe micropitting than a primary ZDDP. Too rapid formation of a thick antiwear tribofilm early in the test serves to prevent adequate running-in of sliding parts, which subsequently leads to higher asperity stresses and more asperity stress cycles and consequently more micropitting. Therefore, any adverse effects of ZDDP on micropitting and surface fatigue in general are mechanical in nature and can be accounted for through ZDDP's influence on running-in and resulting asperity stress history. The observed correlation between antiwear film formation rate and micropitting should help in the design of oil formulations that extend component lifetime by controlling both wear and micropitting damage.

  • Journal article
    Xu Y, Balint D, Dini D, 2019,

    A new hardness formula incorporating the effect of source density on indentation response: a discrete dislocation plasticity analysis

    , Surface and Coatings Technology, Vol: 374, Pages: 763-773, ISSN: 0257-8972

    Planar discrete dislocation plasticity (DDP) calculations that simulate thin single crystal films bonded to a rigid substrate indented by a rigid wedge are performed for different values of film thickness and dislocation source density. As in prior studies, an indentation size effect (ISE) is observed when indentation depth is sufficiently small relative to the film thickness. Thedependence of the ISE on dislocation source density is quantified in this study, and a modified form of the scaling law for the dependence of hardness on indentation depth, first derived by Nix and Gao, is proposed, which is valid over the entire range of indentation depths and correlates the length scale parameter with the average dislocation source spacing. Nanoindentation experimental data from the literature are fitted using this formula, which further verifies the proposed scaling of indentation pressure on dislocation source density.

  • Journal article
    Poole B, Barzdajn B, Dini D, Stewart D, Dunne FPEet al., 2019,

    The roles of adhesion, internal heat generation and elevated temperatures in normally loaded, sliding rough surfaces

    , International Journal of Solids and Structures, ISSN: 0020-7683

    The thermal effects of plastic and frictional heat generation and elevated temperature were examined along with the role of adhesion in the context of galling wear, using a representative crystal plasticity, normally loaded, sliding surface model. Galling frequency behaviour was predicted for 316L steel. Deformation of the surfaces was dominated by the surface geometry, with no significant effect due to variations in frictional models. Plastic and frictional heating were found to have a minimal effect on the deformation of the surface, with the rapid conduction of heat preventing any highly localised heating. There was no corresponding effect on the predicted galling frequency response.Isothermal, elevated temperature conditions caused a decrease in galling resistance, driven by the temperature sensitivity of the critical resolved shear stress. The extent of deformation, as quantified by the area of plastically deformed material and plastic reach, increased with temperature. Comparisons were made with literature results for several surface amplitude and wavelength conditions. Model results compared favourably with those in the literature. However, the reduction in predicted galling resistance with elevated temperature for a fixed surface was not as severe as observations in the literature, suggesting other mechanisms (e.g. phase transformations, surface coatings and oxides) are likely important.

  • Journal article
    Campen S, Moorhouse SJ, Wong JSS, 2019,

    Mechanism of an asphaltene inhibitor in different depositing environments: Influence of colloid stability

    , Journal of Petroleum Science and Engineering, Pages: 106502-106502, ISSN: 0920-4105

    Additives are used to reduce unwanted carbonaceous deposits of asphaltenes on surfaces during petroleum production from natural oil and gas reservoirs. The working mechanism of formulated additive packages can be multifaceted. Additives may be effective in the bulk fluid by preventing asphaltenes aggregation, as well as at the surface by preventing asphaltenes adhesion. In this paper, we investigate the numerous different mechanisms by which an asphaltene inhibitor can interfere with the formation of carbonaceous deposits using a combination of techniques including dynamic light scattering to determine particle size distribution, quartz crystal microbalance with dissipation monitoring to examine deposition behaviour and atomic force microscopy to probe deposit morphology. The tested inhibitor prevents deposition of asphaltenes in toluene, where asphaltenes exist as a stable colloidal dispersion of nanoaggregates, by forming barrier-type films that inhibit asphaltenes adhesion and displacing adsorbed thin films of asphaltenes. However, inhibitor performance in heptane-toluene, where asphaltenes are destabilised, depends on the degree of destabilisation. At low heptane volume fraction, inhibitor slows the rate of deposition and deposition rate decreases with increasing inhibitor concentration. However, at high heptane volume fraction, inhibitor can increase the deposition rate, particularly when used in high concentration. At high heptane volume fraction, inhibitor addition alters the morphology of the deposit from that consisting of large flocculent aggregates to that consisting of smaller, submicrometer aggregates. This is consistent with the finding that inhibitor acts as an anti-agglomerant and prevents the formation of large aggregates in the bulk liquid. This paper shows that the impact of inhibitor addition depends on the environmental conditions encountered and the degree of destabilisation of the asphaltenes. Where inhibitor addition alters the nature of depo

  • Journal article
    Campen SM, Moorhouse SJ, Wong JSS, 2019,

    Effect of aging on the removal of asphaltene deposits with aromatic solvent

    , Langmuir, Vol: 35, Pages: 11995-12008, ISSN: 0743-7463

    Surface-deposition of destabilised colloidal particles of asphaltenes poses a serious and costly problem during petroleum production. Remediation of asphaltene-fouled well-bore and surface facilities is often undertaken by flowing aromatic solvent to remove deposited films. However, little is known about the properties of deposited asphaltene films during their removal by solvent-rinsing. Here, we carry out quartz crystal microbalance with dissipation monitoring (QCM-D) experiments to investigate surface-deposition of destabilized colloidal particles of asphaltenes and their subsequent removal by solvent-rinsing. It is shown that the properties of deposited films during solvent removal depend on the history of the deposit. Newly formed deposit films are removed immediately without significant change in their mechanical properties during removal. However, deposits that remain on the surface for an extended time in a poor solvent (a low-asphaltene solubility solvent), “aged deposits”, are more difficult to remove and exhibit increased dissipation during the removal period, indicating that they swell and are softer. Liquid-cell atomic force microscopy (AFM) confirms that aged deposits swell when the quality of the solvent is subsequently improved by exchanging for a high-asphaltene solubility solvent. Deposit swelling is accompanied by a change in film morphology, from particulate to continuous. Stubborn deposits of aged asphaltene films, which remain after solvent-rinsing, may be partly removed by flowing dissolved asphaltenes in good solvent. Hence, reinjection of asphaltenes during remediation can aid deposit removal.

  • Journal article
    Biancofiore L, Giacopini M, Dini D, 2019,

    Interplay between wall slip and cavitation: A complementary variable approach

    , Tribology International, Vol: 137, Pages: 324-339, ISSN: 0301-679X

    In this work a stable and reliable numerical model based on complementary variables is developed to study lubricated contacts characterised by slip at one or both surfaces and in the presence of cavitation. This model can be used to predict surface behaviour when cavitation induced by e.g. the presence of surface texture, slip, or a combination of the two is encountered, with varying surface parameters. For this purpose, two different algorithms are coupled to predict the formation of cavitation, through a mass-conserving formulation, and the presence of slip at the wall. The possible slippage is described by a limiting shear criterion formulated using a Tresca model. To show the flexibility of our model, several bearing geometries have been analysed, such as a twin parabolic slider, a cosine profile used to mimic a bearing, and a pocketed slider bearing employed to study the effect of surface texture. We observe that the lubrication performance (i.e. low friction coefficient) can be improved by using materials that promote slippage at the moving wall. The location of the slippage region can be optimised to find the lowest value of friction coefficient. Our theoretical developments and numerical implementation are shown to produce useful guidelines to improve and optimise the design of textured superoleophobic surfaces in the presence of lubricated contacts.

  • Journal article
    Guegan J, Southby M, Spikes H, 2019,

    Friction modifier additives, synergies and antagonisms

    , Tribology Letters, Vol: 67, ISSN: 1023-8883

    There is growing interest in reducing friction in lubricated machine components to thereby increase the energy efficiency of machines. One important way to minimise friction is to employ friction modifier additives to reduce friction in thin film boundary lubrication conditions. There are currently three main types of friction modifier additive, organic friction modifiers, oil soluble organomolybdenum friction modifiers and functionalised polymers. In common practice, a single such additive is generally employed in a formulated lubricant, but it is of interest to explore whether combinations of two friction modifier additives may prove beneficial. In this study, the performance of eight commercial friction modifier additives spanning all three main types was first measured in three quite different friction tests. The aim was to identify the contact conditions under which each additive was most effective. Additive solutions in both a base oil and a formulated engine oil were investigated. In general, functionalised polymers were most beneficial in sliding–rolling contacts, while oil soluble organomolybdenum friction modifiers worked best in severe, reciprocating sliding conditions. However, all friction modifier additive response was strongly affected by the other additives present in formulated engine oils. The friction performance of combinations of friction modifier additives was then explored. When two different friction modifiers additives were combined in solution, several possible outcomes were observed. The most common was for one of the additives to predominate, to give friction that was characteristic of that additive alone, while in some cases friction lay between the values produced by either additive on its own. In a few cases the additives behaved antagonistically so that the combination gave higher friction than either additive by itself. In a few cases true synergy was observed, where a combination of two additives produced lower friction in a g

  • Journal article
    Kanazawa Y, De Laurentis N, Kadiric A, 2019,

    STUDIES of Friction in Grease Lubricated Rolling Bearings Using Ball-on-Disc and Full Bearing Tests

    , Tribology Transactions, Pages: 1-28, ISSN: 1040-2004
  • Journal article
    Vidotto M, Botnariuc D, De Momi E, Dini Det al., 2019,

    A computational fluid dynamics approach to determine white matter permeability

    , Biomechanics and Modeling in Mechanobiology, Vol: 4, Pages: 1111-1122, ISSN: 1617-7940

    Glioblastomas represent a challenging problem with an extremely poor survival rate. Since these tumour cells have a highly invasive character, an effective surgical resection as well as chemotherapy and radiotherapy is very difficult. Convection-enhanced delivery (CED), a technique that consists in the injection of a therapeutic agent directly into the parenchyma, has shown encouraging results. Its efficacy depends on the ability to predict, in the pre-operative phase, the distribution of the drug inside the tumour. This paper proposes a method to compute a fundamental parameter for CED modelling outcomes, the hydraulic permeability, in three brain structures. Therefore, a bidimensional brain-like structure was built out of the main geometrical features of the white matter: axon diameter distribution extrapolated from electron microscopy images, extracellular space (ECS) volume fraction and ECS width. The axons were randomly allocated inside a defined border, and the ECS volume fraction as well as the ECS width maintained in a physiological range. To achieve this result, an outward packing method coupled with a disc shrinking technique was implemented. The fluid flow through the axons was computed by solving Navier–Stokes equations within the computational fluid dynamics solver ANSYS. From the fluid and pressure fields, an homogenisation technique allowed establishing the optimal representative volume element (RVE) size. The hydraulic permeability computed on the RVE was found in good agreement with experimental data from the literature.

  • Journal article
    Yu M, Evangelou S, Dini D,

    Position control of parallel active link suspension with backlash

    , IEEE Transactions on Industrial Electronics, ISSN: 0278-0046

    In this paper, a position control scheme for the novel Parallel Active Link Suspension (PALS) with backlash is developed to enhance the vehicle ride comfort and road holding. A PALS-retrofitted quarter car test rig is adopted, with the torque flow and backlash effect on the suspension performance analyzed. An elastic linear equivalent model of the PALS-retrofitted quarter car, which bridges the actuator position and the equivalent force between the sprung and unsprung masses, is proposed and mathematically derived, with both the geometry and backlash nonlinearities compensated. A position control scheme is then synthesized, with an outer-loop H∞ control for ride comfort and road holding enhancement and an inner-loop cascaded proportional-integral control for the reference position tracking. Experiments with the PALS-retrofitted quarter car test rig are performed over road cases of a harmonic road, a smoothed bump and frequency swept road excitation. As compared to a conventional torque control scheme, the newly proposed position control maintains the performance enhancement by the PALS, while it notably attenuates the overshoot in the actuator’s speed variation, and thereby it benefits the PALS with less power demand and less suspension deflection increment.

  • Journal article
    Zhan W, Rodriguez y Baena F, Dini D, 2019,

    Effect of tissue permeability and drug diffusion anisotropy on convection-enhanced delivery

    , Drug Delivery, Vol: 26, Pages: 773-781, ISSN: 1071-7544

    Although convection-enhanced delivery (CED) can successfully facilitate a bypass of the blood brain barrier, its treatment efficacy remains highly limited in clinic. This can be partially attributed to the brain anisotropic characteristics that lead to the difficulties in controlling the drug spatial distribution. Here, the responses of six different drugs to the tissue anisotropy are examined through a parametric study performed using a multiphysics model, which considers interstitial fluid flow, tissue deformation and interlinked drug transport processes in CED. The delivery outcomes are evaluated in terms of the penetration depth and delivery volume for effective therapy. Simulation results demonstrate that the effective penetration depth in a given direction can be improved with the increase of the corresponding component of anisotropic characteristics. The anisotropic tissue permeability could only reshape the drug distribution in space but has limited contribution to the total effective delivery volume. On the other hand, drugs respond in different ways to the anisotropic diffusivity. The large delivery volumes of fluorouracil, carmustine, cisplatin and doxorubicin could be achieved in relatively isotropic tissue, while paclitaxel and methotrexate are able to cover enlarged regions into anisotropic tissues. Results obtained from this study serve as a guide for the design of CED treatments.

  • Journal article
    Ayestarán Latorre C, Ewen JP, Gattinoni C, Dini Det al., 2019,

    Simulating surfactant-iron oxide interfaces: from density functional theory to molecular dynamics

    , The Journal of Physical Chemistry B, Vol: 123, Pages: 6870-6881, ISSN: 1520-6106

    Understanding the behaviour of surfactant molecules on iron oxide surfaces is important for many industrial applications. Molecular dynamics (MD) simulations of such systems have been limited by the absence of a force-field (FF) which accurately describes the molecule-surface interactions. In this study, interaction energies from density functional theory (DFT) + U calculations with a van der Waals functional are used to parameterize a classical FF for MD simulations of amide surfactants on iron oxide surfaces. The Original FF, which was derived using mixing rules and surface Lennard-Jones (LJ) parameters developed for nonpolar molecules, were shown to significantly underestimate the adsorption energy and overestimate the equilibrium adsorption distance compared to DFT. Conversely, the Optimized FF showed excellent agreement with the interaction energies obtained from DFT calculations for a wide range of surface coverages and molecular conformations near to and adsorbed on α-Fe2O3(0001). This was facilitated through the use of a Morse potential for strong chemisorption interactions, modified LJ parameters for weaker physisorption interactions, and adjusted partial charges for the electrostatic interactions. The Original FF and Optimized FF were compared in classical nonequilibrium molecular dynamics (NEMD) simulations of amide molecules confined between iron oxide surfaces. When the Optimized FF was employed, the amide molecules were pulled closer to the surface and the orientation of the headgroups was more similar to that observed in the DFT calculations compared to the Original FF. The Optimized FF proposed here facilitates classical MD simulations of anhydrous amide-iron oxide interfaces in which the interactions are representative of accurate DFT calculations.

  • Journal article
    Puhan D, Wong J, 2019,

    Properties of Polyetheretherketone (PEEK) transferred materials in a PEEK-steel contact

    , Tribology International, Vol: 135, Pages: 189-199, ISSN: 0301-679X

    Polyetheretherketone (PEEK) is a high performance polymer that can be an alternative to metal for some moving components in unlubricated conditions. During rubbing, PEEK is transferred to the counterface. The formation and properties of PEEK transfer films on steel and sapphire are studied by in-situ observations of PEEK wear process, contact temperatures and triboemission, as well as FTIR and Raman spectroscopies ex situ. Our results suggest that frictional heating alone may not be sufficient to generate PEEK degradation observed in the transfer materials. Triboplasma observed during rubbing, together with the mechanical shear, may promote generations of radicals and degradation of PEEK, which subsequently influence the properties of PEEK transfer film and performance of polymer-metal tribopair.

  • Journal article
    Carpenter G, Bozorgi S, Vladescu S, Forte A, Myant C, Potineni R, Reddyhoff T, Baier Set al., 2019,

    A study of saliva lubrication using a compliant oral mimic

    , Food Hydrocolloids, Vol: 92, Pages: 10-18, ISSN: 0268-005X

    Due to ethical issues and the difficulty in obtaining biological tissues, it is important to find synthetic elastomers that can be used as replacement test media for research purposes. An important example of this is friction testing to understand the mechanisms behind mouthfeel attributes during food consumption (e.g. syrupy, body and clean finish), which requires an oral mimic. In order to assess the suitability of possible materials to mimic oral surfaces, a sliding contact is produced by loading and sliding a hemispherical silica pin against either a polydimethyl siloxane (PDMS), agarose, or porcine tongue sample. Friction is measured and elastohydrodynamic film thickness is calculated based on the elastic modulus of the samples, which is measured using an indentation method. Tests were performed with both saliva and pure water as the lubricating fluid and results compared to unlubricated conditions.PDMS mimics the tongue well in terms of protein adhesion, with both samples showing significant reductions in friction when lubricated with saliva versus water, whereas agarose showed no difference between saliva and water lubricated conditions. This is attributed to PDMS's OSi(CH3)2- group which provides excellent adhesion for the saliva protein molecules, in contrast with the hydrated agarose surface. The measured modulus of the PDMS (2.2 MPa) is however significantly greater than that of tongue (3.5 kPa) and agarose (66–174 kPa). This affects both the surface (boundary) friction, at low sliding speeds, and the entrained elastohydrodynamic film thickness, at high speeds.Utilising the transparent PDMS sample, we also use fluorescence microscopy to monitor the build-up and flow of dyed-tagged saliva proteins within the contact during sliding. Results confirm the lubricous boundary film forming nature of saliva proteins by showing a strong correlation between friction and average protein intensity signals (cross correlation coefficient = 0.87). This demonstrates

  • Journal article
    Ferretti A, Giacopini M, Dini D, Fantoni Set al., 2019,

    Experimental measurement of roughness data and evaluation of Greenwood/Tripp parameters for the elastohydrodynamic analysis of a conrod small-end/piston pin coupling

    , SAE Technical Papers, Pages: 2019-24-0081-2019-24-0081, ISSN: 0148-7191
  • Journal article
    Hu S, Cao X, Reddyhoff T, Puhan D, Huang W, Shi X, Peng Z, Dini Det al., 2019,

    Three-dimensional printed surfaces inspired by bi-Gaussian stratified plateaus

    , ACS Applied Materials and Interfaces, Vol: 11, Pages: 20528-20534, ISSN: 1944-8244

    Wettability of artificial surfaces is attracting increasing attention for its relevant technological applications. Functional performance is often achieved by mimicking the topographical structures found in natural flora and fauna; however, surface attributes inspired by geological landscapes have so far escaped attention. We reproduced a stratified morphology of plateaus with a bi-Gaussian height distribution using a three-dimensional direct laser lithography. The plateau-inspired artificial surface exhibits a hydrophobic behavior even if fabricated from a hydrophilic material, giving rise to a new wetting mechanism that divides the well-known macroscopic Wenzel and Cassie states into four substates. We have also successfully applied the plateau-inspired structure to droplet manipulation.

  • Journal article
    Dawczyk J, Morgan N, Russo J, Spikes Het al., 2019,

    Film thickness and friction of ZDDP tribofilms

    , Tribology Letters, Vol: 67, ISSN: 1023-8883

    Tribofilm formation by several zinc dialkyl- and diaryldithiophosphate (ZDDP) solutions in thin film rolling-sliding conditions has been investigated. A primary, a secondary alkyl and a mixed alkyl ZDDP show similar rates of film formation and generate films typically 150 nm thick. Another secondary ZDDP forms a tribofilm much faster and the film is partially lost after extended rubbing. An aryl ZDDP forms a tribofilm much more slowly. The films all have a pad-like structure, characterised by flat pad regions separated by deep valleys. Three different techniques have been used to analyse the thickness and morphology of the tribofilms: spacer layer imaging (SLIM), scanning white light interferometry (SWLI) of the gold-coated film and contact mode atomic force microscopy (AFM). The SLIM method measures considerably thicker films than the other two techniques, probably because of lack of full conformity of a glass disc loaded against the rough tribofilm. No evidence of a highly viscous layer on top of the solid tribofilm is seen. SWLI and contact mode AFM measure similar film thicknesses. The importance of coating the tribofilm with a reflective layer prior to using SWLI is confirmed. As noted in previous work, the formation of a ZDDP tribofilm is accompanied by a marked shift in the Stribeck friction curve towards higher entrainment speed. For a given ZDDP this shift is found to correlate with the measured tribofilm roughness, proving that it results from the influence of this roughness on fluid entrainment in the inlet.

  • Journal article
    Sufian A, Knight C, O'Sullivan C, Van Wachem B, Dini Det al., 2019,

    Ability of a pore network model to predict fluid flow and drag in saturated granular materials

    , Computers and Geotechnics, Vol: 110, Pages: 344-366, ISSN: 0266-352X

    The local flow field and seepage induced drag obtained from Pore Network Models (PNM) is compared to Immersed Boundary Method (IBM) simulations, for a range of linear graded and bimodal samples. PNM were generated using a weighted Delaunay Tessellation (DT), along with the Modified Delaunay Tessellation (MDT) which considers the merging of tetrahedral Delaunay cells. Two local conductivity models are compared in simulating fluid flow in the PNM. The local pressure field was very accurately captured, while the local flux (flow rate) exhibited more scatter and sensitivity to the choice of the local conductance model. PNM based on the MDT clearly provided a better correlation with the IBM. There was close similarity in the network shortest paths, indicating that the PNM captures dominant flow channels. Comparison of streamline profiles demonstrated that local pressure drops coincided with the pore constrictions. A rigorous validation was undertaken for the drag force calculated from the PNM by comparing with analytical solutions for ordered array of spheres. This method was subsequently applied to all samples, and the calculated force was compared with the IBM data. Linear graded samples were able to calculate the force with reasonable accuracy, while the bimodal samples exhibited slightly more scatter.

  • Journal article
    Geng Z, Puhan D, Reddyhoff T, 2019,

    Using acoustic emission to characterize friction and wear in dry sliding steel contacts

    , Tribology International, Vol: 134, Pages: 394-407, ISSN: 0301-679X

    © 2019 Acoustic emission (AE) was recorded during tribological tests on 52,100 steel specimens under different loads. AE signals were transformed to the frequency domain using a Fast Fourier Transform and parameters such as power, RMS amplitude, mean frequency, and energy were analyzed and compared with friction coefficient and wear volume measurements. Results show that certain acoustic frequencies reflect friction while others reflect wear. If frequencies are chosen optimally, AE and friction signals are highly correlated (Pearson coefficients >0.8). SEM and Raman analysis reveal how plastic deformation and oxide formation affect friction, wear and AE simultaneously. AE recordings contains more information than conventional friction and wear volume measurements and are more sensitive to changes in mechanism. This all demonstrates AE's potential as a tool to monitor tribological behavior.

  • Journal article
    Rosenkranz A, Costa HL, Profito F, Gachot C, Medina S, Dini Det al., 2019,

    Influence of surface texturing on hydrodynamic friction in plane converging bearings - An experimental and numerical approach

    , Tribology International, Vol: 134, Pages: 190-204, ISSN: 0301-679X

    The frictional behaviour of plane converging bearings was experimentally and numerically studied for four texture geometries fabricated by ultra-short pulse laser texturing (single pocket, line-, cross- and dot-like texture) and convergence ratios under full-film lubrication in the presence of thick oil films (up to 100 μm). Regarding the experiments, small variations in the spread of results between different textures and a general improvement over the untextured reference can be observed. Numerical simulations help to clarify the expected variations and conditions under which these occur. For high convergences, the simulations demonstrated that textures are beneficial for friction reduction, regardless of load and relative texture's position. For low convergences, a significant friction reduction occurs for textures being located at the bearing's inlet.

  • Journal article
    Ebrahimi M, Balint D, Sutton A, Dini Det al., 2019,

    A discrete crack dynamics model of toughening in brittle polycrystalline material by crack deflection

    , Engineering Fracture Mechanics, Vol: 214, Pages: 95-111, ISSN: 0013-7944

    This paper focuses on the study of the effect of the interfacial strength of grain boundaries and elliptical inclusions on crack path deflection. The method is developed to channel a crack into a toughening configuration (arrays of elliptical holes and inclusions are considered) in order to obtain the optimised microstructure required to enhance fracture toughness through different mechanisms. The proposed technique is shown to reproduce experimental crack propagation paths in various configurations and is capable of capturing the effect of that variation of the GB and the inclusion interfacial strength; it provides a powerful tool to understand the interplay between microstructural features and improve materials performance.

  • Journal article
    Vladescu S-C, Fowell M, Mattsson L, Reddyhoff Tet al., 2019,

    The effects of laser surface texture applied to internal combustion engine journal bearing shells - An experimental study

    , TRIBOLOGY INTERNATIONAL, Vol: 134, Pages: 317-327, ISSN: 0301-679X
  • Journal article
    Peng B, Spikes H, Kadiric A, 2019,

    The development and application of a scuffing test based on contra-rotation

    , Tribology Letters, Vol: 67, ISSN: 1023-8883

    Scuffing is a surface failure mode that occurs in sliding–rolling contacts subjected to high loads and high sliding speeds, such as those in gears and cam-followers. Owing to its sudden onset, rapid progression and dependence on both fluid and boundary lubricant films, scuffing is difficult to study in a repeatable manner. This paper describes further development of a recently proposed scuffing test method based on contra-rotation, its extension to higher loads using a new experimental set-up and its application to study the onset of scuffing with a selection of model and fully-formulated oils. The method employs two surfaces moving in opposite directions under rolling–sliding conditions, with a fixed load and step-wise increasing sliding speed. By decoupling the entrainment and sliding speeds, the method allows the effects of lubricant formulation on scuffing performance to be isolated from the influence of viscosity. The approach achieves high sliding speeds in parallel with low entrainment speeds, while minimising the undesirable effects of surface wear and frictional heating. The proposed test is relatively fast and economical, with total test time of about 30 min including specimen cleaning and set-up. Results show that the newly implemented modifications have improved the repeatability of the test method, so that the number of repeat tests required for reliable oil ranking results is minimal. Tests with model and fully-formulated oils show that the onset of scuffing is characterised by a sharp and unrecoverable increase in friction and accompanied by the destruction of any boundary films. All tests show that the relationship load × speedn = constant holds at scuffing, with the exact value of the exponent n being dependent on the oil formulation. Additivised oils were shown to have enhanced scuffing resistance, which arises from their ability to postpone the uncontrollable rise in friction to higher sliding speeds. Finally, the critical maximu

  • Journal article
    Rycerz P, Kadiric A, 2019,

    The influence of slide–roll ratio on the extent of micropitting damage in rolling–sliding contacts pertinent to gear applications

    , Tribology Letters, Vol: 67, ISSN: 1023-8883

    Micropitting is a type of surface damage that occurs in rolling–sliding contacts operating under thin oil film, mixed lubrication conditions, such as those formed between meshing gear teeth. Like the more widely studied pitting damage, micropitting is caused by the general mechanism of rolling contact fatigue but, in contrast to pitting, it manifests itself through the formation of micropits on the local, roughness asperity level. Despite the fact that micropitting is increasingly becoming a major mode of gear failure, the relevant mechanisms are poorly understood and there are currently no established design criteria to assess the risk of micropitting occurrence in gears or other applications. This paper provides new understanding of the tribological mechanisms that drive the occurrence of micropitting damage and serves to inform the ongoing discussions on suitable design criteria in relation to the influence of contact slide–roll ratio (SRR) on micropitting. A triple-disc rolling contact fatigue rig is used to experimentally study the influence of the magnitude and direction of SRR on the progression of micropitting damage in samples made of case-carburised gear steel. The test conditions are closely controlled to isolate the influence of the variable of interest. In particular, any variation in bulk heating at different SRRs is eliminated so that tests are conducted at the same film thickness for all SRRs. The results show that increasing the magnitude of SRR increases the level of micropitting damage and that negative SRRs (i.e. the component where damage is being accumulated is slower) produce more micropitting than the equivalent positive SRRs. Measurements of elastohydrodynamic film thickness show that in the absence of bulk heating, increasing SRR does not cause a reduction in EHL film thickness and therefore this cannot be the reason for the increased micropitting at higher SRRs. Instead, we show that the main mechanism by which increase in SRR

  • Journal article
    Profito FJ, Zachariadis DC, Dini D, 2019,

    Partitioned fluid-structure interaction techniques applied to the mixed-elastohydrodynamic solution of dynamically loaded connecting-rod big-end bearings

    , Tribology International, ISSN: 0301-679X

    The present contribution proposes different partitioned techniques, which are commonly used in fluid-structure interaction (FSI) applications, in the context of tribological simulations of the transient mixed-elastohydrodynamic problem of dynamically loaded connecting-rod bearings. With the premise that the FSI framework developed is general, in the current work the fluid flow effects have been considered through the averaged Reynolds equation by Patir & Cheng and the mass-conserving Elrod-Adams cavitation model. The multiphysics simulation framework developed has been used to simulate the connecting-rod big-end bearings of both heavy-duty diesel and high-speed motorcycle engines. In the latter case, the influence of polymer concentration in VM-containing oils with similar HTHS150 values on the bearing power loss is investigated and discussed in details.

  • Journal article
    Restrepo SE, van Eijk MCP, Ewen JP, 2019,

    Behaviour of n-alkanes confined between iron oxide surfaces at high pressure and shear rate: A nonequilibrium molecular dynamics study

    , Tribology International, Vol: 137, Pages: 420-432, ISSN: 0301-679X

    The behaviour of n-alkanes confined and sheared between iron oxide surfaces has been studied using nonequilibrium molecular dynamics simulations. The molecular extension, orientation, film structure, flow, and friction have been investigated for a range of n-alkane chain lengths under conditions representative of the elastohydrodynamic lubrication regime. At high pressure, the molecules show strong layering and long-range order, suggesting solid-like films. Conversely, high shear rates result in less elongated, layered, and ordered molecules; indicating more liquid-like films. Although Couette flow is usually observed for short n-alkanes, the flow is often non-linear for long n-alkanes. The friction coefficient increases logarithmically with shear rate, but the slope decreases with increasing pressure such that it becomes insensitive to shear rate for long n-alkanes.

  • Journal article
    Heyes D, Smith ER, Dini D, 2019,

    Shear stress relaxation and diffusion in simple liquids by molecular dynamics simulations: Analytic expressions and paths to viscosity

    , The Journal of Chemical Physics, Vol: 150, ISSN: 0021-9606

    The results are reported of an equilibrium molecular dynamics simulation study of the shear viscosity, η, and self-diffusion coefficient, D, of the Lennard-Jones liquid using the Green-Kubo (GK) method. Semiempirical analytic expressions for both GK time correlation functions were fitted to the simulation data and used to derive analytic expressions for the time dependent diffusion coefficient and shear viscosity, and also the correlation function frequency transforms. In the case of the shear viscosity for a state point near the triple point, a sech function was found to fit the correlation function significantly better than a gaussian in the ballistic short time regime. A reformulation of the shear GK formula in terms of a time series of time integrals (“viscuits”) and contributions to the viscosity from components based on the initial stress (“visclets”) enable the GK expressions to be recast in terms of probability distributions which could be used in coarse grained stochastic models of nanoscale flow. The visclet treatment shows that stress relaxation is statistically independent of the initial stress for equilibrium and metastable liquids, suggesting that shear stress relaxation in liquids is diffusion controlled. By contrast, the velocity autocorrelation function is sensitive to the initial velocity. Weak oscillations and a plateau at intermediate times originate to a greater extent from the high velocity tail of the Maxwell-Boltzmann velocity distribution. Simple approximate analytic expressions for the mean square displacement and the self Van Hove correlation function are also derived.

  • Journal article
    Wu P-J, Masouleh MI, Paterson C, Dini D, Török P, Overby DR, Kabakova IVet al., 2019,

    Detection of proteoglycan loss from articular cartilage using Brillouin microscopy, with applications to osteoarthritis

    , Biomedical Optics Express, Vol: 10, Pages: 2457-2466, ISSN: 2156-7085

    The degeneration of articular cartilage (AC) occurs in osteoarthritis (OA), which is a leading cause of pain and disability in middle-aged and older people. The early disease-related changes in cartilage extra-cellular matrix (ECM) start with depletion of proteoglycan (PG), leading to an increase in tissue hydration and permeability. These early compositional changes are small (<10%) and hence difficult to register with conventional non-invasive imaging technologies (magnetic resonance and ultrasound imaging). Here we apply Brillouin microscopy for detecting changes in the mechanical properties and composition of porcine AC. OA-like degradation is mimicked by enzymatic tissue digestion, and we compare Brillouin microscopy measurements against histological staining of PG depletion over varying digestion times and enzyme concentrations. The non-destructive nature of Brillouin imaging technology opens new avenues for creating minimally invasive arthroscopic devices for OA diagnostics and therapeutic monitoring.

  • Journal article
    Geng Z, Shi G, Shao T, Liu Y, Duan D, Reddyhoff Tet al., 2019,

    Tribological behavior of patterned TiAlN coatings at elevated temperatures

    , SURFACE & COATINGS TECHNOLOGY, Vol: 364, Pages: 99-114, ISSN: 0257-8972
  • Journal article
    Hu S, Vladescu S-C, Puhan D, Huang W, Shi X, Peng Zet al., 2019,

    Bi-Gaussian stratified theory to understand wettability on rough topographies

    , Surface and Coatings Technology, ISSN: 0257-8972
  • Journal article
    Hu S, Reddyhoff T, Puhan D, Vladescu S-C, Huang W, Shi X, Dini D, Peng Zet al., 2019,

    Bi-Gaussian stratified wetting model on rough surfaces

    , Langmuir, Vol: 35, Pages: 5967-5974, ISSN: 0743-7463

    Wetting mechanisms on rough surfaces were understood from either a monolayer or a multiscale perspective. However, it has recently been shown that the bi-Gaussian stratified nature of real surfaces should be accounted for when modeling mechanisms of lubrication, sealing, contact, friction, acoustic emission, and manufacture. In this work, a model combining Wenzel and Cassie theories was put forward to predict the static contact angle of a droplet on a bi-Gaussian stratified surface. The model was initially applied to numerically simulated surfaces and subsequently demonstrated on hydrophilic steel and hydrophobic self-assembled monolayer specimens with preset bi-Gaussian stratified topographies. In the Wenzel state, both the upper and the lower surface components are fully wetted. In the Cassie state, the upper component is still completely wetted, while the lower component serves as gas traps and reservoirs. By this model, wetting evolution was assessed, and the existence of different wetting states and potential state transitions was predicted.

  • Journal article
    Ewen J, Gao H, Mueser M, Dini Det al., 2019,

    Shear heating, flow, and friction of confined molecular fluids at high pressure

    , Physical Chemistry Chemical Physics, Vol: 21, Pages: 5813-5823, ISSN: 1463-9076

    Understanding the molecular-scale behavior of fluids confined and sheared between solid surfaces is important for many applications, particularly tribology where this often governs the macroscopic frictional response. In this study, nonequilibrium molecular dynamics simulations are performed to investigate the effects of fluid and surface properties on the spatially resolved temperature and flow profiles, as well as friction. The severe pressure and shear rate conditions studied are representative of the elastohydrodynamic lubrication regime. In agreement with tribology experiments, flexible lubricant molecules give low friction, which increases linearly with logarithmic shear rate, while bulky traction fluids show higher friction, but a weaker shear rate dependence. Compared to lubricants, traction fluids show more significant shear heating and stronger shear localization. Models developed for macroscopic systems can be used to describe both the spatially resolved temperature profile shape and the mean film temperature rise. The thermal conductivity of the fluids increases with pressure and is significantly higher for lubricants compared to traction fluids, in agreement with experimental results. In a subset of simulations, the efficiency of the thermostat in one of the surfaces is reduced to represent surfaces with lower thermal conductivity. For these unsymmetrical systems, the flow and the temperature profiles become strongly asymmetric and some thermal slip can occur at the solid-fluid interface, despite the absence of velocity slip. The larger temperature rises and steeper velocity gradients in these cases lead to large reductions in friction, particularly at high pressure and shear rate.

  • Journal article
    Fatti G, Righi MC, Dini D, Ciniero Aet al., 2019,

    First-principles insights into the structural and electronic properties of polytetrafluoroethylene in its high-pressure phase (form III)

    , Journal of Physical Chemistry C, Vol: 123, Pages: 6250-6255, ISSN: 1932-7447

    Polytetrafluoroethylene (PTFE), commercially known as Teflon, is one the most effective insulating polymers for a wide range of applications because of its peculiar electronic, mechanical, and thermal properties. Several studies have attempted to elucidate the structural and electronic properties of PTFE; however, some important aspects of its structural and electronic characteristics are still under debate. To shed light on these fundamental features, we have employed a first-principles approach to optimize the two coexisting PTFE structures (monoclinic and orthorhombic) at high pressure by using the characteristic zigzag planar chain configuration. Our electronic analysis of the optimized structures shows charge transfer from carbons to fluorines, supporting the PTFE electronegative character. In addition, band structure calculations show that the band gap is estimated to be around 5 eV, which correlates with previous studies. Moreover, the analysis of the valence and conduction states reveals an intrachain and an interchain character of the charge distribution, suggesting additional insights into the PTFE electronic properties.

  • Journal article
    Stevenson H, Jaggard M, Akhbari P, Vaghela U, Gupte C, Cann Pet al., 2019,

    The role of denatured synovial fluid proteins in the lubrication of artificial joints

    , Biotribology, Vol: 17, Pages: 49-63, ISSN: 2352-5738

    CoCrMo ball-on-flat wear tests were carried out with 25 wt% bovine calf serum (25BCS) and human synovial fluid (HSF) to investigate artificial joint lubricating mechanisms. Post-test the wear scar on the disc was measured and surface deposits in and around the rubbed region were analysed by Micro InfraRed Reflection Absorption Spectroscopy (Micro-IRRAS). In most tests the HSF samples gave higher wear than the 25BCS solution; in some cases, up to 77%. After rinsing a similar pattern of surface deposits was observed in and around the wear scar for both the model and HSF. Micro-IRRAS showed the deposits were primarily denatured proteins with an increased β-sheet content. In some cases, trans-alkyl chain/carbonyl components were also present and these were assigned to lipids. Thioflavin T fluorescent imaging also indicated aggregated non-native β-sheet fibrils were present in the deposits and their presence was associated with lower wear. The formation of insoluble, denatured protein films is thought to be the primary lubrication mechanism contributing to surface protection during rubbing. From this and earlier work we suggest inlet shear induces denaturing of proteins resulting in the formation of non-native β-sheet aggregates. This material is entrained into the contact region where it forms the lubricating film. Patient synovial fluid chemistry appears to influence wear, at least in the bench test, and thus could contributes to increased risk of failure, or success, with metal-metal hips. Finally using 25BCS as a reference screening fluid gives an overly optimistic view of wear in these systems.

  • Journal article
    Manieri F, Stadler K, Morales-Espejel GE, Kadiric Aet al., 2019,

    The origins of white etching cracks and their significance to rolling bearing failures

    , International Journal of Fatigue, Vol: 120, Pages: 107-133, ISSN: 0142-1123

    Presence of white etching cracks has been widely associated with early failures of rolling bearings in a number of applications, with wind turbine gearbox bearings being the most frequently cited and practically significant example. Despite the recent research efforts, there is yet no universal agreement on the mechanisms of formation of these cracks and little direct evidence of their significance to bearing reliability. In an attempt to address this, this paper proposes a new theory on the origins and significance of white etching cracks. The paper provides systematic experimental evidence in support of this theory through rolling contact fatigue tests performed with AISI 52100 bearing steel specimens on a triple-disc machine over a wide range of contact conditions. The test results show that white etching cracks can be formed with base oils as well as commercially formulated transmission and engine oils. WECs were generated under slide-roll-ratios ranging from 0.05 to 0.3, under positive and negative sliding, different contact pressures and specific film thicknesses ranging from 0.1 to 0.7. No white etching areas were ever observed without the associate crack being present, and it was also shown that white etching areas themselves can be produced in a pure rubbing contact of bearing steels under both lubricated and unlubricated conditions. These results provide direct evidence that the steel transformations that exhibit themselves as white etching areas are formed through rubbing of the existing crack faces, and that the chemical composition of the lubricant and the magnitude and direction of sliding are not the primary driver of WEC formation, in contrast to literature. Instead, the results presented here show that WECs are formed through the action of a specific stress history in time via the following mechanism: (i) Short-lived high contact stresses, which can be caused by a number of factors, act in the initial stages of the component life to initiate early f

  • Journal article
    Vladescu S-C, Putignano C, Marx N, Keppens T, Reddyhoff T, Dini Det al., 2019,

    The percolation of liquid through a compliant seal - an experimental and theoretical study

    , Journal of Fluids Engineering, Vol: 141, Pages: 031101-031101, ISSN: 0098-2202
  • Journal article
    Limbert G, Masen MA, Pond D, Graham HK, Sherratt MJ, Jobanputra R, McBride Aet al., 2019,

    Biotribology of the ageing skin—Why we should care

    , Biotribology, Vol: 17, Pages: 75-90, ISSN: 2352-5738

    Ageing of populations has emerged as one of the most pressing societal, economic and healthcare challenges currently facing most nations across the globe. The ageing process itself results in degradation of physiological functions and biophysical properties of organs and tissues, and more particularly those of the skin. Moreover, in both developed and emerging economies, population ageing parallels concerning increases in lifestyle-associated conditions such as Type 2 diabetes, obesity and skin cancers. When considered together, these demographic trends call for even greater urgency to find clinical and engineering solutions for the numerous age-related deficits in skin function.From a tribological perspective, detrimental alterations of skin biophysical properties with age have fundamental consequences on how one interacts with the body's inner and outer environments. This stems from the fact that, besides being the largest organ of the human body, and also nearly covering its entirety, the skin is a multifunctional interface which mediates these interactions.The aim of this paper is to present a focused review to discuss some of the consequences of skin ageing from the viewpoint of biotribology, and their implications on health, well-being and human activities. Current and future research questions/challenges associated with biotribology of the ageing skin are outlined. They provide the background and motivation for identifying future lines of research that could be taken up by the biotribology and biophysics communities.

  • Journal article
    Reddyhoff T, Schmidt A, Spikes H, 2019,

    Thermal conductivity and flash temperature

    , Tribology Letters, Vol: 67, Pages: 22-22, ISSN: 1023-8883

    The thermal conductivity is a key property in determining the friction-induced temperature rise on the surface of sliding components. In this study, a Frequency Domain Thermoreflectance (FDTR) method is used to measure the thermal conductivity of a range of tribological materials (AISI 52100 bearing steel, silicon nitride, sapphire, tungsten carbide and zirconia). The FDTR technique is validated by comparing measurements of pure germanium and silicon with well-known values, showing discrepancies of less than 3%. For most of the tribological materials studied, the thermal conductivity values measured are reasonably consistent with values found in the literature. However the measured thermal conductivity of AISI 52100 steel (21 W/mK) is less than half the value cited in the literature (46 W/mK). Further bulk thermal conductivity measurements show that this discrepancy arises from a reduction in thermal conductivity of AISI 52100 due to through-hardening. The thermal conductivity value generally cited and used in the literature represents that of soft, annealed alloy, but through-hardened AISI 52100, which is generally employed in rolling bearings and for lubricant testing, appears to have a much lower thermal conductivity. This difference has a large effect on estimates of flash temperature and example calculations show that it increases the resulting surface temperatures by 30 to 50%. The revised value of thermal conductivity of bearing steel also has implications concerning heat transfer in transmissions.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=391&limit=50&respub-action=search.html Current Millis: 1575740479184 Current Time: Sat Dec 07 17:41:19 GMT 2019