The Network aims to promote multi-disciplinary approaches to address challenging vaccine-related questions. This page contains a curated list of publications that highlight high-impact and collaborative approaches.

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Hogan AB, Winskill P, Verity R, Griffin J, Ghani Aet al., 2018,

    Modelling population-level impact to inform target product profiles for childhood malaria vaccines

    , BMC Medicine, Vol: 16, ISSN: 1741-7015

    BackgroundThe RTS,S/AS01 vaccine for Plasmodium falciparum malaria demonstrated moderate efficacy in 5–17-month-old children in phase 3 trials, and from 2018, the vaccine will be evaluated through a large-scale pilot implementation program. Work is ongoing to optimise this vaccine, with higher efficacy for a different schedule demonstrated in a phase 2a challenge study. The objective of our study was to investigate the population-level impact of a modified RTS,S/AS01 schedule and dose amount in order to inform the target product profile for a second-generation malaria vaccine.MethodsWe used a mathematical modelling approach as the basis for our study. We simulated the changing anti-circumsporozoite antibody titre following vaccination and related the titre to vaccine efficacy. We then implemented this efficacy profile within an individual-based model of malaria transmission. We compared initial efficacy, duration and dose timing, and evaluated the potential public health impact of a modified vaccine in children aged 5–17 months, measuring clinical cases averted in children younger than 5 years.ResultsIn the first decade of delivery, initial efficacy was associated with a higher reduction in childhood clinical cases compared to vaccine duration. This effect was more pronounced in high transmission settings and was due to the efficacy benefit occurring in younger ages where disease burden is highest. However, the low initial efficacy and long duration schedule averted more cases across all age cohorts if a longer time horizon was considered. We observed an age-shifting effect due to the changing immunological profile in higher transmission settings, in scenarios where initial efficacy was higher, and the fourth dose administered earlier.ConclusionsOur findings indicate that, for an imperfect childhood malaria vaccine with suboptimal efficacy, it may be advantageous to prioritise initial efficacy over duration. We predict that a modified vaccine could outpe

  • Journal article
    Sherrard-Smith E, Sala KA, Betancourt M, Upton LM, Angrisano F, Morin MJ, Ghani AC, Churcher TS, Blagborough AMet al., 2018,

    Synergy in anti-malarial pre-erythrocytic and transmission-blocking antibodies is achieved by reducing parasite density

    , eLife, Vol: 7, ISSN: 2050-084X

    Anti-malarial pre-erythrocytic vaccines (PEV) target transmission by inhibiting human infection but are currently partially protective. It has been posited, but never demonstrated, that co-administering transmission-blocking vaccines (TBV) would enhance malaria control. We hypothesized a mechanism that TBV could reduce parasite density in the mosquito salivary glands, thereby enhancing PEV efficacy. This was tested using a multigenerational population assay, passaging Plasmodium berghei to Anopheles stephensi mosquitoes. A combined efficacy of 90.8% (86.7–94.2%) was observed in the PEV +TBV antibody group, higher than the estimated efficacy of 83.3% (95% CrI 79.1–87.0%) if the two antibodies acted independently. Higher PEV efficacy at lower mosquito parasite loads was observed, comprising the first direct evidence that co-administering anti-sporozoite and anti-transmission interventions act synergistically, enhancing PEV efficacy across a range of TBV doses and transmission intensities. Combining partially effective vaccines of differing anti-parasitic classes is a pragmatic, powerful way to accelerate malaria elimination efforts.

  • Journal article
    Mullineaux-Sanders C, Colins JW, Ruano-Gallego D, Levy M, Pevsner-Fischer M, Glegola-Madejska IT, Sagfors AM, Wong JLC, Elinav E, Crepin VF, Frankel GMet al., 2017,

    Citrobacter rodentium relies on commensals for colonization of the colonic mucosa

    , Cell Reports, Vol: 21, Pages: 3381-3389, ISSN: 2211-1247

    We investigated the role of commensals at the peak of infection with the colonic mouse pathogen Citrobacter rodentium. Bioluminescent and kanamycin (Kan)-resistant C. rodentium persisted avirulently in the cecal lumen of mice continuously treated with Kan. A single Kan treatment was sufficient to displace C. rodentium from the colonic mucosa, a phenomenon not observed following treatment with vancomycin (Van) or metronidazole (Met). Kan, Van, and Met induce distinct dysbiosis, suggesting C. rodentium relies on specific commensals for colonic colonization. Expression of the master virulence regulator ler is induced in germ-free mice, yet C. rodentium is only seen in the cecal lumen. Moreover, in conventional mice, a single Kan treatment was sufficient to displace C. rodentium constitutively expressing Ler from the colonic mucosa. These results show that expression of virulence genes is not sufficient for colonization of the colonic mucosa and that commensals are essential for a physiological infection course.

  • Journal article
    Johnson R, Ravenhall M, Pickard D, Dougan G, Byrne A, Frankel GMet al., 2017,

    Comparison of Salmonella enterica serovars Typhi and Typhimurium reveals typhoidal-specific responses to bile

    , Infection and Immunity, Vol: 86, ISSN: 0019-9567

    Salmonella enterica serovars Typhi and Typhimurium cause typhoid fever and gastroenteritis respectively. A unique feature of typhoid infection is asymptomatic carriage within the gallbladder, which is linked with S. Typhi transmission. Despite this, S. Typhi responses to bile have been poorly studied. RNA-Seq of S. Typhi Ty2 and a clinical S. Typhi isolate belonging to the globally dominant H58 lineage (129-0238), as well as S. Typhimurium 14028, revealed that 249, 389 and 453 genes respectively were differentially expressed in the presence of 3% bile compared to control cultures lacking bile. fad genes, the actP-acs operon, and putative sialic acid uptake and metabolism genes (t1787-t1790) were upregulated in all strains following bile exposure, which may represent adaptation to the small intestine environment. Genes within the Salmonella pathogenicity island 1 (SPI-1), encoding a type IIII secretion system (T3SS), and motility genes were significantly upregulated in both S. Typhi strains in bile, but downregulated in S. Typhimurium. Western blots of the SPI-1 proteins SipC, SipD, SopB and SopE validated the gene expression data. Consistent with this, bile significantly increased S. Typhi HeLa cell invasion whilst S. Typhimurium invasion was significantly repressed. Protein stability assays demonstrated that in S. Typhi the half-life of HilD, the dominant regulator of SPI-1, is three times longer in the presence of bile; this increase in stability was independent of the acetyltransferase Pat. Overall, we found that S. Typhi exhibits a specific response to bile, especially with regards to virulence gene expression, which could impact pathogenesis and transmission.

  • Journal article
    Parker EPK, Praharaj I, Zekavati A, Lazarus RP, Giri S, Operario DJ, Liu J, Iturriza-Gómara M, Kampmann B, John J, Kang G, Grassly NCet al., 2017,

    Influence of the intestinal microbiota on the immunogenicity of oral rotavirus vaccine given to infants in south India

    , Vaccine, Vol: 36, Pages: 264-272, ISSN: 0264-410X

    Oral rotavirus vaccines have consistently proven to be less immunogenic among infants in developing countries. Discrepancies in the intestinal microbiota, including a greater burden of enteropathogens and an altered commensal community composition, may contribute to this trend by inhibiting the replication of vaccine viruses. To test this possibility, we performed a nested case–control study in Vellore, India, in which we compared the intestinal microbiota of infants who responded serologically or not after two doses of Rotarix delivered at 6 and 10 weeks of age as part of a clinical trial (CTRI/2012/05/002677). The prevalence of 40 bacterial, viral, and eukaryotic pathogen targets was assessed in pre-vaccination stool samples from 325 infants using singleplex real-time PCR on a Taqman array card (TAC). In a subset of 170 infants, we assessed bacterial microbiota composition by sequencing the 16S rRNA gene V4 region. Contrary to expectations, responders were more likely than non-responders to harbor ≥1 bacterial enteropathogen at dose 1 (26% [40/156] vs 13% [21/157] of infants with TAC results who completed the study per protocol; χ2, P = .006), although this was not apparent at dose 2 (24% [38/158] vs 23% [36/158]; P = .790). Rotavirus shedding after dose 1 was negatively correlated with the replication of co-administered oral poliovirus vaccine (OPV). We observed no consistent differences in composition or diversity of the 16S bacterial microbiota according to serological response, although rotavirus shedding was associated with slightly more bacterial taxa pre-vaccination. Overall, our findings demonstrate an inhibitory effect of co-administered OPV on the first dose of Rotarix, consistent with previous studies, but in the context of OPV co-administration we did not find a strong association between other components of the intestinal microbiota at the time of vaccination and Rotarix immunogenicity.

  • Journal article
    Portaliou AG, Tsolis KC, Loos MS, Balabanidou V, Rayo J, Tsirigotaki A, Crepin VF, Frankel G, Kalodimos CG, Karamanou S, Economou Aet al., 2017,

    Hierarchical protein targeting and secretion is controlled by an affinity switch in the type III secretion system of enteropathogenic <i>Escherichia coli</i>

    , EMBO JOURNAL, Vol: 36, Pages: 3517-3531, ISSN: 0261-4189
  • Journal article
    Kaslow DC, Okumu F, Wells TNC, Rabinovich R, Bassat Q, Birkett A, Bompart F, Burt A, Chaccour C, Chitnis C, Culpepper J, Domingo G, Duffy P, Ghani A, Greenwood B, Hall BF, Hamon N, Jacobs-Lorena M, James S, Koram KA, Kremsner P, Kumar A, Leroy D, Leroy O, Lindsay S, Majambere S, Mbogo C, McCarthy J, Qi G, Rasgon J, Richardson J, Richie T, Sauerwein R, Slutsker L, Vekemans Jet al., 2017,

    malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication

    , PLoS Medicine, Vol: 14, ISSN: 1549-1277

    Since the turn of the century, a remarkable expansion has been achieved in the range andeffectiveness of products and strategies available to prevent, treat, and control malaria,including advances in diagnostics, drugs, vaccines, and vector control. These advanceshave once again put malaria elimination on the agenda. However, it is clear that even withthe means available today, malaria control and elimination pose a formidable challenge inmany settings. Thus, currently available resources must be used more effectively, and newproducts and approaches likely to achieve these goals must be developed. This paper considerstools (both those available and others that may be required) to achieve and maintainmalaria elimination. New diagnostics are needed to direct treatment and detect transmissionpotential; new drugs and vaccines to overcome existing resistance and protect against clinicaland severe disease, as well as block transmission and prevent relapses; and new vectorcontrol measures to overcome insecticide resistance and more powerfully interrupt transmission.It is also essential that strategies for combining new and existing approaches aredeveloped for different settings to maximise their longevity and effectiveness in areas withcontinuing transmission and receptivity. For areas where local elimination has been recentlyachieved, understanding which measures are needed to maintain elimination is necessaryto prevent rebound and the reestablishment of transmission. This becomes increasinglyimportant as more countries move towards elimination.

  • Journal article
    Cepeda-Molero M, Berger CN, Walsham ADS, Ellis SJ, Wemyss-Holden S, Schueller S, Frankel G, Angel Fernandez Let al., 2017,

    Attaching and effacing (A/E) lesion formation by enteropathogenic E. coli on human intestinal mucosa is dependent on non-LEE effectors

    , PLoS Pathogens, Vol: 13, ISSN: 1553-7366

    Enteropathogenic E. coli (EPEC) is a human pathogen that causes acute and chronic pediatric diarrhea. The hallmark of EPEC infection is the formation of attaching and effacing (A/E) lesions in the intestinal epithelium. Formation of A/E lesions is mediated by genes located on the pathogenicity island locus of enterocyte effacement (LEE), which encode the adhesin intimin, a type III secretion system (T3SS) and six effectors, including the essential translocated intimin receptor (Tir). Seventeen additional effectors are encoded by genes located outside the LEE, in insertion elements and prophages. Here, using a stepwise approach, we generated an EPEC mutant lacking the entire effector genes (EPEC0) and intermediate mutants. We show that EPEC0 contains a functional T3SS. An EPEC mutant expressing intimin but lacking all the LEE effectors but Tir (EPEC1) was able to trigger robust actin polymerization in HeLa cells and mucin-producing intestinal LS174T cells. However, EPEC1 was unable to form A/E lesions on human intestinal in vitro organ cultures (IVOC). Screening the intermediate mutants for genes involved in A/E lesion formation on IVOC revealed that strains lacking non-LEE effector/s have a marginal ability to form A/E lesions. Furthermore, we found that Efa1/LifA proteins are important for A/E lesion formation efficiency in EPEC strains lacking multiple effectors. Taken together, these results demonstrate the intricate relationships between T3SS effectors and the essential role non-LEE effectors play in A/E lesion formation on mucosal surfaces.

  • Journal article
    Berger C, Crepin V, Roumeliotis TI, Wright JC, Carson D, Pevsner-Fischer M, Furniss RCD, Dougan G, Bachash M, Yu L, Clements A, Collins JW, Elinav E, larrouy-maumus G, Choudhary JS, Frankel GMet al., 2017,

    Citrobacter rodentium subverts ATP flux 1 and cholesterol homeostasis in 2 intestinal epithelial cell in vivo

    , Cell Metabolism, Vol: 26, Pages: 738-752.e6, ISSN: 1550-4131

    The intestinal epithelial cells (IECs) that line the gut form a robust line of defense against ingested pathogens. We investigated the impact of infection with the enteric pathogen Citrobacter rodentium on mouse IEC metabolism using global proteomic and targeted metabolomics and lipidomics. The major signatures of the infection were upregulation of the sugar transporter Sglt4, aerobic glycolysis, and production of phosphocreatine, which mobilizes cytosolic energy. In contrast, biogenesis of mitochondrial cardiolipins, essential for ATP production, was inhibited, which coincided with increased levels of mucosal O2 and a reduction in colon-associated anaerobic commensals. In addition, IECs responded to infection by activating Srebp2 and the cholesterol biosynthetic pathway. Unexpectedly, infected IECs also upregulated the cholesterol efflux proteins AbcA1, AbcG8, and ApoA1, resulting in higher levels of fecal cholesterol and a bloom of Proteobacteria. These results suggest that C. rodentium manipulates host metabolism to evade innate immune responses and establish a favorable gut ecosystem.

  • Journal article
    Parker EPK, Praharaj I, John J, Kaliappan SP, Kampmann B, Kang G, Grassly NCet al., 2017,

    Changes in the intestinal microbiota following the administration of azithromycin in a randomised placebo-controlled trial among infants in south India

    , Scientific Reports, Vol: 7, ISSN: 2045-2322

    Macrolides are among the most widely prescribed antibiotics worldwide. However, their impact on the gut’s bacterial microbiota remains uncertain. We characterised the intestinal microbiota in 6–11 month-old infants in India who received a 3-day course of azithromycin or placebo during a randomised trial of oral poliovirus vaccine immunogenicity (CTRI/2014/05/004588). In 60 infants per study arm, we sequenced the V4 region of the bacterial 16S rRNA gene in stool samples collected before and 12 days after finishing treatment. We also tested for the presence of common bacterial, viral, and eukaryotic enteropathogens in the same samples using real-time PCR in a Taqman array card (TAC) format. Azithromycin induced a modest decline in microbiota richness and a shift in taxonomic composition driven by a reduction in the relative abundance of Proteobacteria and Verrucomicrobia (specifically Akkermansia muciniphila). The former phylum includes pathogenic strains of Escherichia coli and Campylobacter spp. that declined in prevalence based on the TAC assay. These findings differ from previous observations among older children and adults in Europe and North America, suggesting that the effects of azithromycin on the bacterial flora may be specific to the age and geographic setting of its recipients.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=979&limit=10&page=2&respub-action=search.html Current Millis: 1713521624301 Current Time: Fri Apr 19 11:13:44 BST 2024