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Figure 10. (i) Contour maps showing variation of one-dimensional pre-multiplied spectra
with wall-normal position for (a) Reτ = 1010; (b) Reτ = 1910; (c) Reτ = 2630; (d ) Reτ = 7300.
The y-axis shows length scale in both inner (left) and outer (right) scaling. The x-axis shows
wall-normal position for both inner (lower) and outer scaling (upper). The colour scale shows
magnitude of kxΦuu/U 2

τ . (+) denote ‘inner’ and ‘outer’ energy sites (white) λ+
x = 1000, z+ = 15

and (black) λx = 6δ, z = 0.06δ. Dot-dashed lines show k−1
x limits λx = 15.7z (and z+ = 100

and λx = 0.3δ for plot d ). (ii) Corresponding mean profiles of (!) turbulence intensities and
(−) velocity. Dotted line shows u+ = z+. Dashed lines and (+) symbols denote z+ = 15 and
z = 0.06δ. Dot-dashed line shows U+ = (1/κ) ln(z+) + A (where κ = 0.41 and A = 5.0). Red line
shows MK2003 formulation.
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Near-wall control is the only demonstrated strategy
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Figure 4.8: Streamwise turbulent stress u2+ profiles in inner coordinates. Symbols as
indicated in Table 4.1.

wall, such as the uncertainty in initial wall location y0 (about 5µm), the calibra-

tion sensitivity due to low mean velocity, possible asymmetrical temperature profiles

around the sensor, to name a few.

Profiles of the streamwise turbulent stress u2+ are shown in inner and outer coor-

dinates in Figure 4.8. A good agreement between the profiles is seen near the wall,

with a peak near y+ ≈ 15, as expected. The inner peak values for the three lowest

Reτ are u2+
I = [8.3; 8.1; 7.7]. After applying the spatial filtering correction suggested

by Smits et al. [2011b], all values collapse to u2+
I = 8.44± 0.02, which is well within

experimental error. Therefore, the available data show no Reynolds number trend in

the inner peak value for turbulent boundary layers for 3, 000 ≤ Reτ ≤ 10, 000. How-

ever, only the three lowest Reynolds number cases can be measured at such small y+,

so less than a decade in Reτ is covered, so that no more general conclusion can be

made.

The outer region shows a clear variation with Reτ , and a Reynolds number de-

pendent second peak emerges for higher Reynolds numbers. The value of streamwise
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Figure 10. (i) Contour maps showing variation of one-dimensional pre-multiplied spectra
with wall-normal position for (a) Reτ = 1010; (b) Reτ = 1910; (c) Reτ = 2630; (d ) Reτ = 7300.
The y-axis shows length scale in both inner (left) and outer (right) scaling. The x-axis shows
wall-normal position for both inner (lower) and outer scaling (upper). The colour scale shows
magnitude of kxΦuu/U 2

τ . (+) denote ‘inner’ and ‘outer’ energy sites (white) λ+
x = 1000, z+ = 15

and (black) λx = 6δ, z = 0.06δ. Dot-dashed lines show k−1
x limits λx = 15.7z (and z+ = 100

and λx = 0.3δ for plot d ). (ii) Corresponding mean profiles of (!) turbulence intensities and
(−) velocity. Dotted line shows u+ = z+. Dashed lines and (+) symbols denote z+ = 15 and
z = 0.06δ. Dot-dashed line shows U+ = (1/κ) ln(z+) + A (where κ = 0.41 and A = 5.0). Red line
shows MK2003 formulation.
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Hutchins & Marusic (2007)
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Figure 4.9: Magnitudes of the outer peak in u2+ for pipe (◦) and boundary layer
(!).(Filled symbols) data for Reτ > 20, 000; (solid blue line) Best fit to pipe data as
u2+
II = 0.49 ln(Reτ ) + 1.7; (solid red line) Best fit to boundary layer data as u2+

II =
0.47 ln(Reτ ) + 2.0; (♦) data from atmospheric boundary layer [Metzger et al., 2007];
(dashed line) u2+

II = 0.63 ln(Reτ ) + 0.33 from Pullin et al. [2013] and (dash-dot line)
u2+
II = 0.42 ln(Reτ ) + 2.82 from Pullin et al. [2013].
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Figure 10. (i) Contour maps showing variation of one-dimensional pre-multiplied spectra
with wall-normal position for (a) Reτ = 1010; (b) Reτ = 1910; (c) Reτ = 2630; (d ) Reτ = 7300.
The y-axis shows length scale in both inner (left) and outer (right) scaling. The x-axis shows
wall-normal position for both inner (lower) and outer scaling (upper). The colour scale shows
magnitude of kxΦuu/U 2

τ . (+) denote ‘inner’ and ‘outer’ energy sites (white) λ+
x = 1000, z+ = 15

and (black) λx = 6δ, z = 0.06δ. Dot-dashed lines show k−1
x limits λx = 15.7z (and z+ = 100

and λx = 0.3δ for plot d ). (ii) Corresponding mean profiles of (!) turbulence intensities and
(−) velocity. Dotted line shows u+ = z+. Dashed lines and (+) symbols denote z+ = 15 and
z = 0.06δ. Dot-dashed line shows U+ = (1/κ) ln(z+) + A (where κ = 0.41 and A = 5.0). Red line
shows MK2003 formulation.
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Can we control this footprint to reduce drag?

If so, what are the actuator requirements?

Hutchins & Marusic (2007)
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Figure 11: Magnitude of the outer spectral peak. !, boundary layer; •, pipe; - - - - -,
kxΦuu/u2

τ = 1.24.

Hence, the higher Reynolds number data indicate that the location of the outer spectral
peak varies as y+ ∼ lnReτ for both pipe and boundary layer flows, in contrast to previous
observations that showed a much stronger trend with Reynolds number (something like
Re0.5τ ). This result implies that the motions containing high energy are confined in a
region almost fixed in y+ as the Reynolds number increases. Because the viscous length
scale decreases with increasing Reτ in a developing boundary layer, this would mean that
the region with high energy and vorticity decreases in physical space and diminishes near
the wall (see also the discussion by Pullin et al. (2013)). In the limit of infinite Reynolds
number this would recover a potential flow situation with essentially a slip-flow bounded
by a vortex sheet at the wall.
The magnitude of the outer spectral peak for each case is shown in Figure 11. For both

flows, the amplitude appears to approach a constant value at high Reynolds numbers
where kxΦuu/u2

τ ≈ 1.24± 0.05, although the rate of approach is faster for the boundary
layer. These observations and the significance of the value 1.24 will be discussed in more
detail below, but we should note that there are considerable uncertainties in finding the
magnitude of the peak (principally due to calibration issues and the difficulties in finding
the friction velocity in boundary layers).
The wavenumber associated with the outer spectral peak, kOSP , is shown in figure 12.

For increasing Reynolds number, it decreases in viscous units as k+OSP ≈ MRe−0.5
τ , while

increasing in outer scaling as kOSP δ ≈ MRe0.5τ , where M = 0.2. In terms of wavelength,
this gives λ+

OSP ≈ (M/2π)Re0.5τ and λOSP /δ ≈ (M/2π)Re−0.5
τ , respectively, so that

the wavelength associated with the large energetic scales does not scale with the inner
length scale, nor with the outer scale scale; λOSP emerges as an independent length
scale. In addition, λOSP ≈ (M/2π)(δν/uτ )0.5, so that at very large Reynolds numbers
ν/uτ ≪ λOSP ≪ δ.
The wavenumber of the outer spectral peak appears, therefore, to be a scale represen-

tative of the inertial range. Given the consensus in the literature that the outer spectral
peak is associated with the superstructures, we are led to the hypothesis that the super-
structures are actually the manifestation of the inertial range, rather than the largest
scales of motion. At lower Reynolds numbers, the SSs only appear as very large scales
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Figure 12: Wavenumber of the outer spectral peak in inner (left) and outer coordinates
(right). !, boundary layer; ", boundary layer data from Mathis et al. (2009); (solid
line), k+x = 0.02Re−0.5

τ (left); kxδ = 0.02Re0.5τ (right); ♦, predicted wavenumber for
Reτ = 650,000.

(that is, λx/δ ≈ 3–6) due to a lack of scale separation between the inertial range and
the large scales, but at higher Reynolds numbers the length scale associated with the
outer spectral peak (and therefore of the superstructures) decreases, so that in the at-
mospheric boundary layer at Reτ ≈ 650,000, we expect λx/δ ≈ 0.4 (as inferred from the
correlation shown in figure 12). Figure 13 reproduces the spectrogram obtained in the
neutral atmospheric boundary layer by Mathis et al. (2009), and there may indeed be
an outer spectral peak whose location is proportional to lnReτ and whose wavelength
(in outer units) follows Re−0.5

τ . Also, the location and the wavelength of this predicted
peak appears to be consistent with the spectral peak found by Guala et al. (2011) in the
wall-normal range y+ ≈ 1000 at a wavelength of about 0.45δ (note that these values have
been inferred from figure 12 in Guala et al. 2011 and the various caveats related to the
uncertainty of data obtained in the surface layer should apply here too). In addition, the
appearance of of an inertial range described by the length scale λOSP is consistent with
the observation of Vallikivi et al. (2014) who find a log region (in mean and intensity)
only after the outer spectral peak has emerged.

As noted earlier, pipe flows behave somewhat differently. Here, we expect that kOSP

follows the VLSM peak, so that for pipes λOSP /δ ∝ Re−0.67
τ and λ+

OSP ∝ Re0.33τ . Hence,
the scale separation between inner and inertial ranges appears slower in pipes than in
boundary layers, whereas the separation between outer and inertial scales is faster. The
slower approach to the inner limit agrees well with the observation that the appearance
of a logarithmic region occurs at a higher value of y+ in pipes than in boundary layers.

4. The Mesolayer

We now draw together the observations on the spectral peaks and the behavior of
the mean velocity and the variances. To this end, contour maps of the pre-multiplied
spectra in the boundary layer and pipe are shown in figures 14 and 15, together with
the corresponding mean velocity and variance profiles. We see again that the location
of the outer spectral peak given by the correlations of Hutchins & Marusic (2007) and
Mathis et al. (2009) for boundary layers overestimate its Reynolds number dependence.
In addition, the location of the outer spectral peak coincides closely with the start of
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If so, what are the actuator requirements?

Can we control this footprint to reduce drag?

If so, what are the actuator requirements?
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a b s t r a c t 
While large-scale motions are most energetic in the logarithmic region of a high-Reynolds-number turbu- 
lent boundary layer, they also have an influence in the inner-region. In this paper we describe an exper- 
imental investigation of manipulating the large-scale motions and reveal how this affects the turbulence 
and skin-friction drag. A boundary layer with a friction Reynolds number of 14 400 is controlled using a 
spanwise array of nine wall-normal jets operated in an on/off mode and with an exit velocity that causes 
the jets in cross-flow to penetrate within the log-region. Each jet is triggered in real-time with an active 
controller, driven by a time-resolved footprint of the large-scale motions acquired upstream. Nominally, 
the controller injects air into large-scale zones with positive streamwise velocity fluctuations; these zones 
are associated with positive wall-shear stress fluctuations. This control scheme reduced the streamwise 
turbulence intensity in the log-region up to a downstream distance of more than five times the bound- 
ary layer thickness, δ, from the point of actuation. The highest reduction in spectral energy—more than 
30%—was found for wavelengths larger than 5 δ in the log-region at 1.7 δ downstream of actuation, while 
scales larger than 2 δ still comprised more than 15% energy reduction in the near-wall region. In addition, 
a 3.2% reduction in mean skin-friction drag was achieved at 1.7 δ downstream of actuation. Our reduc- 
tions of the streamwise turbulence intensity and mean skin-friction drag exceed a base line control-case, 
for which the jet actuators were operated with the same temporal pattern, but not synchronised with 
the incoming large-scale zones of positive fluctuating velocity. 

© 2017 Elsevier Inc. All rights reserved. 
1. Introduction 

Wall-bounded flows are important to many natural and engi- 
neering applications, and given that skin-friction drag constitutes 
approximately 50%, 90% and 100% of the total drag on airliners, 
submarines and pipelines, respectively ( Gad-el Hak, 1994 ), consid- 
erable effort has been devoted to reducing skin-friction drag over 
the past few decades. 

Over the past 50 years or so it has been shown that turbu- 
lent boundary layers (TBLs) comprise coherent structures in both 
the near-wall and outer regions ( Kline et al., 1967; Townsend, 
1976; Kim and Moin, 1979; Robinson, 1991; Wark and Nagib, 1990; 
Adrian et al., 20 0 0; Smits and Marusic, 2013 ). The majority of 
flow control studies with the aim of skin-friction drag reduction 
have attempted to manipulate structures within the near-wall re- 
gion ( Moin and Bewley, 1994; Gad-el Hak, 20 0 0; Rathnasingham 
and Breuer, 1997; 2003; Karniadakis and Choi, 2003; Kasagi et al., 
2009; Gouder et al., 2013; Bai et al., 2014 , among others). These 

∗ Corresponding author. 
E-mail address: wbaars@unimelb.edu.au (W.J. Baars). 

near-wall structures scale with viscous units, being the friction ve- 
locity U τ ≡

√ 
τw /ρ, where τw is the mean wall-shear stress and ρ

is the fluid density, and inner length scale ν/ U τ , with ν being the 
fluid kinematic viscosity; note that superscript ‘+’ denotes scaling 
with inner-variables. As such, most of the aforementioned stud- 
ies tailored their control parameters in viscous-scaled units. How- 
ever, when increasing the Reynolds number to more pragmatic val- 
ues, the range of energetic turbulent scales grows, conceptually 
bounded by the outer ( δ, the boundary layer thickness) and in- 
ner ( ν/ U τ ) length scales. We here use the friction Reynolds num- 
ber, Re τ ≡ δU τ / ν , to indicate the state of the TBL. At high, prac- 
tical values of Re τ , the physical thickness of the near-wall region 
and hence the size of the structures populating that region be- 
come smaller ( Head and Bandyopadhyay, 1981; Robinson, 1991; 
Gad-el Hak and Bandyopadhyay, 1994 ). Due to the characteris- 
tic length [ O(µm)] and time [ O(µs)] scales in engineering appli- 
cations (Re τ ∼ 10 4 − 10 6 ) , one needs to deal with micro-electro- 
mechanical systems (MEMS) for control. Both the development and 
operation of these sensors become demanding. At the same time, 
the performance of control schemes solely manipulating the near- 
wall region deteriorates with increasing Re τ ( Chang et al., 2002; 
Iwamoto et al., 2002; Gatti and Quadrio, 2013; Hurst et al., 2014 ). 

http://dx.doi.org/10.1016/j.ijheatfluidflow.2017.05.003 
0142-727X/© 2017 Elsevier Inc. All rights reserved. 
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Fig. 1. Schematic of coherent streamwise flow motion in the spanwise–wall-normal 
plane of a high-Reynolds-number TBL. Regions with positive and negative stream- 
wise velocity fluctuations are referred to as high- and low-speed zones, respectively. 
Associated natural roll-modes are indicated by the arrows. An illustration of oppo- 
sition control is shown using wall-jet actuators. 

An alternative approach to targeting the near-wall small-scale 
motions is to use a large-scale forcing scheme, as investigated 
in the seminal work by Schoppa and Hussain (1998) for a di- 
rect numerical simulation of a turbulent channel flow up to Re τ
≈ 180. A drag reduction of up to 50% was demonstrated (using 
spanwise jets as a large-scale flow forcing), which was interpreted 
as a result of weakened longitudinal vortices near the wall, due 
to forcing-induced suppression of an underlying streak instability 
mechanism. Recently it was shown that the reported drag reduc- 
tion in Schoppa and Hussain (1998) is associated with a transient 
nature of the flow due to the low values of Re τ at which the tur- 
bulence is marginally sustainable ( Canton et al., 2016 ). Moreover, 
Canton et al. (2016) concluded that inducing large-scale vortices 
for drag reduction becomes ineffective at their highest Reynolds 
number ( Re τ ≈ 550). Nevertheless, the question remains whether 
a large-scale control scheme can generate skin-friction drag reduc- 
tion at higher Reynolds numbers, Re τ >  O(10 4 ) . Under these con- 
ditions, the large-scale motions (LSMs) and very large-scale mo- 
tions (or superstructures) become the dominant contributor to the 
turbulent kinetic energy and its production ( Hutchins and Marusic, 
20 07b; 20 07a; Marusic et al., 2010a ). For reference, when consider- 
ing a pre-multiplied energy spectrogram of the streamwise velocity 
fluctuations (energy per wavelength throughout the TBL), the ap- 
pearance of a broad spectral peak in the log-region reflecting the 
LSMs, is only observed for moderate Reynolds numbers (roughly 
Re τ >  20 0 0 Hutchins and Marusic, 2007a ). While LSMs are most 
energetic in the log-region at high Re τ , they also have an influ- 
ence in the near-wall region ( e.g. Abe et al., 2004 ) via a direct su- 
perposition of large-scale energy and an amplitude modulation of 
the smaller scales ( Hutchins and Marusic, 2007a; Marusic et al., 
2010b ). It is therefore hypothesised that controlling the LSMs at 
high Re τ affects the near-wall turbulence and has the potential of 
reducing the mean and fluctuating components of the wall-shear 
stress. 

Large-scale structures in the log-region can simplistically be 
represented as long elongated regions with a streamwise extent 
of O ( δ) , comprising streamwise momentum deficit. These regions 
are flanked on either spanwise side by zones of streamwise mo- 
mentum surplus ( e.g. Adrian et al., 20 0 0 ). The former and the lat- 
ter structures are referred to as low- and high-speed zones, re- 
spectively, and are schematically shown in a spanwise–wall-normal 
plane in Fig. 1 . Here we denote the large-scale streamwise veloc- 
ity fluctuation with u L , so that u L >  0 and u L <  0 indicate high- 
and low-speed zones. Accompanying these large-scale zones are 

counter-rotating roll-modes, with the respective up- and down- 
wash sections embodied within the low- and high-speed zones as 
indicated in Fig. 1 ( e.g. Dennis and Nickels, 2011; Hutchins et al., 
2012 ). 

The aim of the present experimental investigation is to ma- 
nipulate the large-scale high- and low-speed zones in real-time. 
For this we employ a control architecture embedded in the high- 
Reynolds-number boundary layer facility in Melbourne, which is 
introduced in Section 2 . The hardware includes surface-embedded 
actuators, which can inject a wall-normal jet flow into the TBL 
so that the jets in cross-flow penetrate within the log-region. We 
nominally explore an opposition control framework, meaning that 
the actuators are activated while a high-speed zone is present. 
This results in the wall-normal jet flow opposing the down-wash 
sections of the naturally occurring roll-modes and the injection 
of fluid—without streamwise momentum—into the zone with a 
naturally positive velocity fluctuation (see Fig. 1 ). How the con- 
trol affects the downstream flow in the log-region is presented in 
Section 3 , after which we present a detailed boundary layer survey 
and wall-drag characterisation in Section 4 . 
2. Experimental arrangement 
2.1. Facility and conditions 

Experiments were conducted in the boundary layer facility at 
the University of Melbourne ( Nickels et al., 2005; Baars et al., 
2016b ). A 27 m long test section ensures the formation of a high- 
Reynolds-number boundary layer over the wind tunnel floor, while 
high spatial and temporal resolutions are obtained with existing 
instrumentation under moderate free-stream velocities. For a zero- 
pressure gradient configuration, the pressure coefficient is constant 
to within ± 0.87% ( Marusic et al., 2015 ) and free-stream turbulence 
intensities are less than 0.05% at the test section inlet. An isometric 
sketch of the wind tunnel, with an open-view of the test section, 
is shown in Fig. 2 a. A coordinate system with coordinates x , y and 
z denotes the streamwise, spanwise and wall-normal directions of 
the flow, respectively, and its origin coincides with the test section 
inlet, the wall and spanwise centre of the tunnel. 

Real-time control of the TBL was performed at a streamwise 
location that nominally coincided with a floating element drag 
balance (permanently embedded within the wind tunnel surface). 
This large-scale floating element drag balance, with a streamwise 
length l F = 3 . 0 0 0 m and a spanwise width w F = 1 . 0 0 0 m, is cen- 
tred at x = x F = 21 . 00 m and y = 0 . The modular design of the 
flow-exposed surface of the drag balance allowed for an imple- 
mentation of the control hardware, whereas directly measured 
wall drag data at local Reynolds numbers ( Baars et al., 2016b ) pro- 
vided the nominal experimental conditions and assisted in cal- 
ibration of hot-film sensors (discussed later on in Section 2.4 ). 
Throughout this paper, one flow condition is considered, corre- 
sponding to a nominal free-stream velocity of U ∞ = 20 m/s. At x = 
21 . 00 m this provides a boundary layer thickness of δ = 0 . 360 m 
and a friction velocity of U τ = 0 . 641 m/s, resulting in Re τ ≈ 14 400. 
These parameters were determined by fitting a composite veloc- 
ity profile of Chauhan et al. (2009) to the mean velocity profile, 
with log-law constants κ = 0 . 384 and A = 4 . 17 . From friction data 
measured with the floating element drag balance ( Baars et al., 
2016b ), a value of U τ = 0 . 649 m/s is obtained, which agrees to 
within 1.2% with the value found via the composite profile fit. A 
summary of the nominal flow conditions and TBL is provided in 
Table 1 ; here, subscript ‘U’ in U τU refers to an uncontrolled TBL 
flow. Finally, throughout this paper, we employ a location in the 
log-region that reflects the location of the outer-peak in the pre- 
multiplied energy spectrogram under similar conditions ( Mathis 
et al., 2009 ), taken as z + L ≡3 . 9 √ 

Re τ ≈ 477 . At this position, the 
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Fig. 8. (a,b) Iso-contours of the conditional streamwise velocity fluctuations, ̃  u + ( z, τ ) , throughout the boundary layer at d a /δ = 1 . 7 downstream of the actuation, conditioned 
on zero-crossings in the footprint of the large-scale fluctuations at the wall, following Eq. (3) , for both the (a) uncontrolled flow and (b) opposing control case. Vertical dashed 
lines are drawn at τU c /δ = #x/δ and τU c /δ = 2#x/δ (note that d a / δ ≈ 1.7 is located 2 #x / δ downstream of the conditioning point, sensor s 5 ). (c) Profiles of the conditionally 
averaged streamwise velocity fluctuations at z + L ≡ 3 . 9 √ 

Re τ for the uncontrolled flow and all three control schemes. 

Fig. 9. Percentage skin-friction drag reduction at d a = 1 . 7 δ downstream of actu- 
ation and y = 0 . Error bars for the desynchronised , opposing and reinforcing scheme 
have magnitudes of 0.45%, 0.50% and 0.50%, respectively, and correspond to the 95% 
confidence interval of the measurement. 
gion downstream of the wall-normal actuator-flow. In other words, 
the wall-normal jet actuation, regardless of the synchronisation 
between the actuation and the incoming structure, injects fluid 
without any streamwise momentum into the TBL. Possibly, the 
wall-normal jet flows can lift incoming fluid with streamwise mo- 
mentum away from the surface, thereby reducing the streamwise 
velocity gradient at the wall (and hence the skin-friction drag). 
A greater skin-friction drag reduction of 3.2% is observed for the 
opposing control scheme. The additional portion of the drag re- 
duction are related to the less energetic large-scale high-speed 

zones, which exert positive wall-shear stress fluctuations. Accord- 
ingly, the mechanism of the drag reduction of the control scheme 
can be explained as a combination of the beneficial effects of both 
the streamwise momentum deficit generated via the wall-normal 
jet actuation and the energy decrease of the large-scale structures 
which results in a weaker influence on the wall. For the reinforcing 
control case, which strengthens the large-scale fluctuations, a skin- 
friction drag reduction of 1.2% is observed, approximately half of 
that observed during the desynchronised case. Together, despite the 
relatively minor changes in skin-friction drag, the results seem to 
suggest a clear link between the large-scale energy and the mag- 
nitude of the wall shear stress. 
5. Concluding remarks 

The energetic large-scale structures in the log-region of a high- 
Reynolds-number TBL ( Re τ ≈ 14 400) were experimentally manip- 
ulated. A spanwise array of nine wall-normal jets was employed as 
actuators and operated in on/off mode with an exit velocity that 
causes the jets in cross-flow to penetrate within the log-region. 
Each jet was triggered in real-time with an active controller, driven 
by a time-resolved footprint of the large-scale motions acquired 
upstream. 

When on-periods of the actuators are synchronised with large- 
scale high-speed zones in the TBL flow ( opposing control) the rela- 
tive amplitudes of both the high- and low-speed zones in the log- 
region are mitigated following an opposition mechanism. This de- 
crease in streamwise turbulence intensity in the log-region is per- 
sistent for a reasonably large distance, the evidence of which is 
observed even at 5 δ downstream of the actuators. The highest re- 
duction in spectral energy—more than 30%—was found for wave- 
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Fig. 4. Streamwise evolution of the percentage change in the mean and variance of 
the streamwise velocity fluctuations (due to the opposing control scheme, relative 
to the uncontrolled flow) at z + L ≡ 3 . 9 √ 

Re τ ≈ 477 and y = 0 . 
scales however ( λx <  λxF ), most of the spectra collapse ( uncon- 
trolled and opposing controlled flow) except for the closest location 
to the actuation, being d a / δ ≈ 0.8. For this location we attribute 
the substantial increase in the spectral energy of these smaller 
scales to the small-scale turbulence introduced by the actuator jets 
interacting with the TBL. Since the addition of small-scale energy 
seems to dissipate faster than the recovery-effect of the suppres- 
sion of the large-scale energy, a minimum in the variance profile 
of Fig. 4 is explained. Before proceeding with detailed surveys of 
the entire boundary layer at this streamwise location ( d a / δ ≈ 1.7) 
we consider energy spectra for all control schemes at d a / δ ≈ 1.7 
and z = z L . These spectra are shown in Fig. 5  b and indicate that for 
the desynchronised control scheme the overall energy across scales 
shows negligible change with respect to that of the uncontrolled 
flow. In line with Fig. 5  a, for the opposing control scheme, there is 
a significant energy decrease for λx / δ ! 1, which seems to suggest 
that the opposing scheme is successfully targeting and mitigating 
large-scale energy. For the reinforcing control scheme, an enhance- 
ment of energy with respect to the uncontrolled case is observed at 
the large wavelength-end of the spectrum. In summary, it can be 
concluded that for the opposing control case, where the jet actua- 
tors target large-scale positive fluctuations, the energy of the large- 
scale structures in the log-region have been reduced. A reversed 
phenomenon occurs if the actuation is upon the low-speed zones, 
in this case the reinforcing control actually strengthens the large- 
scale fluctuations. For the case of desynchronised control the large- 
scale structures retain their original energy distribution, which is 
potentially the average effect of half of the time having an oppos- 
ing control scheme, and the other half having a reinforcing control 
scheme. 
4. Control effects at d a = 1  . 7  δ downstream of actuation 

All results that follow were measured at a distance d a ≈ 1.7 δ
downstream of actuation. For this location we observed the maxi- 
mum effect of the opposing control scheme. 
4.1. Mean velocity and turbulence intensity profiles 

The mean streamwise velocity and streamwise turbulence in- 
tensity profiles of both the uncontrolled flow and opposing con- 
trolled TBL are shown in Figs. 6 a and b, respectively, for a distance 

Fig. 5. (a) Streamwise evolution of the pre-multiplied energy spectra of the stream- 
wise velocity fluctuations, k x φuu /U 2 τU , corresponding to the variance-curve in Fig. 4 . 
(b) Pre-multiplied energy spectra of the streamwise velocity fluctuations at z + L ≈
477 , d a / δ ≈ 1.7 and y = 0 for the uncontrolled flow and three control schemes. The 
vertical dashed line marks the cut-off wavelength corresponding to the large-scale 
filter (described in Section 2.3.1 ). 

of d a /δ = 1 . 7 downstream of actuation. As seen from Fig. 6 a, in a 
mean sense, the wall-normal jet actuators generate a low-speed 
region from the wall, up to the penetration height (denoted as 
z + p ) of the jet airflow into the turbulent boundary layer, which ex- 
ceeds the upper limit of the log-region, marked in Fig. 6 a with a 
dash-dotted line. The penetration height is determined to be the 
wall-normal height at which the mean streamwise velocity of the 
controlled boundary layer reaches 99% of that of the uncontrolled 
one. Therefore, at the current experimental conditions and with 
the chosen jet exit velocity ( V j / U ∞ ≈ 0.64), direct manipulation 
of the large-scale structures in the log-region is assured. Accord- 
ing to Fig. 6 b, the turbulence intensity has been reduced from the 
first point of the boundary layer measurement ( z + ≈ 8 . 6 ) until a 
wall-normal height of z / δ ≈ 0.08, above which there is an increase 
in the turbulence intensity. This increase diminishes when reach- 
ing the penetration height z + p . In the next section ( Section 4.2 ) we 
will reveal that the increase in turbulence intensity near the upper 

How does a synthetic/pulsed jet evolve in a turbulent boundary layer?

Effectiveness: 
- jet trajectory  
- jet decay



Tu
rb

ul
en

t 
bo

un
d

a
ry

 la
ye

r

0.9 m x 1.9 m x 27 m 
Reτ:  1 000 - 25 000

High-Reynolds number 
boundary layer wind tunnel

d = 1 mm

l =
 1

3 
m

m
d, l, 
f, ū

Synthetic jet

Sinusoidal actuation

δ, U∞, 
ν, Uτ

Jet trajectory: Facility



d, l, 
f, ū

δ, U∞, 
ν, Uτ

TBL: 
Reτ = Uτ δ/ν

Synthetic jet: 
AR = l/d = 13

Synthetic jet

Tu
rb

ul
en

t 
bo

un
d

a
ry

 la
ye

r

D = D(d,l)

Proper scaling of f? 

Variation of trajectory 
with f*, r and Reτ?

Important parameters

Interaction: 
r = ū/U∞ 

 f δ/U∞ 
f* =  f ν/Uτ2 
 f D/U∞

Jet trajectory



Experiments

Trajectory measured from hot-wire measurements matches PIV



Results

A wide range of cases over variation in  
Reynolds number, frequency and velocity ratio



Effect of velocity ratio

Wall-normal penetration increases 
 with velocity ratio



Effect of frequency

Wall-normal penetration decreases 
with frequency



Effect of Reynolds number

Reynolds number has a  
minor effect on trajectory
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Jet trajectory: Empirical model



 

 

Synthetic-jet 
trajectory:

Steady-jet 
trajectory:

U∞/fD << 1U∞/fD << 1 U∞/fD ≈ 1U∞/fD ≈ 1

In the limit of a steady jet the original 
power-law scaling is recovered!

Jet trajectory: Empirical model

How does the jet strength decay with downstream distance?
We could explore this in moderate Reynolds number facilities
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Velocity deficit:

Velocity rms:

Both methods give very similar results

Jet decay



Both methods give very similar resultsVelocity deficit:

Velocity rms:

• RMS only depends on the local velocity signal 

• The velocity deficit compares the perturbed 
with the unperturbed velocity, leading to larger 
uncertainties for hot-wire measurements

Power-Law decay

Jet decay
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This data can be used to examine scaling: 
Is it ‘+’or ‘δ’ or ‘D’?

Reasonable collapse of jet decay

Jet decay



x+ shows a slightly larger spread 
of the data

Jet decay
This data can be used to examine scaling: 

Is it ‘+’or ‘δ’ or ‘D’?



x/δ shows a much larger 
spread of the data

Jet decay
This data can be used to examine scaling: 

Is it ‘+’or ‘δ’ or ‘D’?



But this data can be used to 
investigate scaling with ‘+’or ‘δ’

This suggests that neither x/δ nor x+ 
should be used to scale the decay



Reasonable collapse of jet decay
Consistent with free-wakes

Jet decay
This data can be used to examine scaling: 

Is it ‘+’or ‘δ’ or ‘D’?



The Reynolds number only has a small 
influence on the trajectory of a synthetic jet

The jet trajectory follows a power-law for 
which an empirical scaling has been derived

Summary

Actuator requirements for large-scale control?
Jet frequency determined by passage of VLSMs 
Determine velocity ratio based on the derived 

empirical scaling for the trajectory 
Location of subsequent jets along             

streamwise direction scales with jet dimensions

Jet decay appears to scale with jet dimensions

Thank you!
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