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Context

e Active drag reduction by in-plane wall motion

» Combination of oscillatory spanwise motion and streamwise waves
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o Methodology applies to any other drag-reduction scenarios



Motivation

Hurst et al, JFM 2015
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@ DNS shows significant decline
of drag-reduction effectiveness
with Re

35

@ For given actuation parameters i
log-law appears to asymptote to a s |
near-constant upward shift i

AB" —const = f(Re)

e log-law can be manipulated

(Gatti & Quadrio, 2017) to give: 25
DR = f(Cf ,AB"), but Cf, = f(Re) 207
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Motivation
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o Streamwise energy has outer peak
o Energy increases progressively with Reynolds number

e Suggests presence of energetic outer structures

Do these distort Cf and DR ?



Effects of outer structures on skin friction

g+ (x10%)

Key question: What is the role of energetic outer structures
» In distorting turbulence in viscous wall layer?

» in reducing effectiveness of actuation?



Conceptual representation of LS-SS interaction

Large-scale structure
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lllustration of skewness of small-scale fluctuations

@ Two instantaneous spanwise snapshots of “small-scale” skin friction

@ Envelope of magnitude determined with Hilbert transform
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Large-scale/small-scale splitting

o Hilbert-Huang Empirical Mode Decomposition (EMD) — 2D spatial implementation

@ Splits signal into chosen number of Intrinsic Modes
@ No Fourier cut-offs or explicit filtering; energy conserving

e Mode-wise split of pre-multiplied spanwise spectra of streamwise velocity

fluctuations; 6 modes Re. =1020 T =100
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Large-scale/small-scale splitting

o Modal decomposition of streamwise energy at Y™ =13

Small-scale -
SS

Large scale -
LS




Contributions of modes to streamwise energy
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o Mixed-mode contributions weak

o Z modal contributions = total



Contributions of modes to shear stress and skin friction

o Contribution of turbulent shear stress to C; (Fukagata-lwamoto-Kasagi
relation)
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Conditional statistics

950% sub-ranges of extreme events in large-scales PDF

@ Focuson5%....

o Addition of central band of PDF

— absence of large-scale motions
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Small-scale stress profiles
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Effect on small-scale shear and normal stress in extreme 5% positive and

negative large-scale fluctuations
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Large positive LS fluctuations:
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» thin viscous sublayer & increase viscous stress

>

Increase turbulent SS stress near the wall

Large negative LS fluctuations:
» thicken viscous sublayer & reduce viscous stress
» reduce turbulent SS stress near the wall

Effect
asymmetric!



Quasi-steady representation
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Normalisation by LS-modified skin friction
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Conditional PDFs of Cf, fluctuations

o Conditional sampling of SS skin-friction fluctuations within
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o Strongly asymmetric modulation

e Positive LS motions cause much strongest modulation (large variance of
PDF)

o Negative LS motions cause weaker modulation

mmmm) streaks are already weak due to actuation



Joint PDFs of small-scale motions

Conditional sampling within

— 5% weakest LS events
— 5% strongest LS events

Drastic differences in
> intensity
> correlation
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Conditional sampling of Cf, fluctuations
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Conditional SS PDFs within 5% segments of LS PDF
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e Strongly asymmetric modulation

e Positive LS motions cause strongest modulation

» large variance

Skewness(C fig)
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> Large skewness mmmmm) Modulation cannot be described by variance alone!




Virtual LEBUs - overview

DNS, canonical (unactuated) Channel flow Re. =1000

Domain: 14hx7hx2h 1024x1024x512=0.5Bn nodes.
Duration: t* =5000
LEBUs Yiwer =80 Y5 =200  Az" =220, 440

In-line, z/x-wise staggered:

LEBUS treated as real or
frictionless.

Total: 10 configurations

Parasitic drag ignored

Computations on ARCHER

on 24000 cores,
with UKTC resources
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Configurations

N

[~ 16 or 32

AX" =500

T 160r32

AXT =1400, Az" =500
Ax" =3500, Az" =250




Drag reduction
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Average streamwise energy
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Average streamwise energy

Streamwise-
iIntegrated !!!
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Skin friction snapshots
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Concluding observations

by wall actuation?

[ Do outer-layer structures affect the Re-dependence of drag reduction }

No quantitative answer (yet), on contribution of modulation but.....

Direct large-scales contribution to skin friction is order 30%
Maximum large-scale skin-friction fluctuations around 30%
Maximum skin-friction fluctuations around 100%

Strong differences between effects of positive and negative large-scale
footprints

Strong modulation of near wall small-scale motions and skin friction by
positive large-scale motions; much weaker modulation by negative motions

Positive large-scale fluctuations cause strong increase in energy and shear
stress close to the wall.

Negative large-scale fluctuations cause moderate decrease in energy and
shear stress.



