ACTIVE AND PASSIVE TURBULENT DRAG REDUCTION

Pierre Ricco

Department of Mechanical Engineering
The University of Sheffield

Workshop on Turbulent Skin Friction Drag Reduction Imperial College London - 4-5 December 2017

COLLABORATORS AND FUNDING

COLLABORATORS

- Synthetic jets: Ning Qin (Sheffield)
- Hydrophobic surfaces: Sohrab K. Aghdam (was at Sheffield, now gone...sailed for better unknown shores)
- Discs and rings: Stan Hahn (Honeywell), Claudia Alvarenga, Paolo Olivucci (Sheffield), Daniel Wise (Singapore)
- Laminar traveling waves: Peter Hicks (Aberdeen)

FINANCIAL SUPPORT

- Airbus: Dr Stephen Rolston, Dr Richard Ashworth
- Department of Mechanical Engineering, University of Sheffield
- A* Star Singapore
- Iraqi goverment
- EPSRC First Grant
- H2020 EU

COLLABORATORS AND FUNDING

COLLABORATORS

- Synthetic jets: Ning Qin (Sheffield)
- Hydrophobic surfaces: Sohrab K. Aghdam (was at Sheffield, now gone...sailed for better unknown shores)
- Discs and rings: Stan Hahn (Honeywell), Claudia Alvarenga, Paolo Olivucci (Sheffield), Daniel Wise (Singapore)
- Laminar traveling waves: Peter Hicks (Aberdeen)

FINANCIAL SUPPORT

- Airbus: Dr Stephen Rolston, Dr Richard Ashworth
- Department of Mechanical Engineering, University of Sheffield
- A* Star Singapore
- Iraqi goverment
- EPSRC First Grant
- H2020 EU

COLLABORATORS AND FUNDING

COLLABORATORS

- Synthetic jets: Ning Qin (Sheffield)
- Hydrophobic surfaces: Sohrab K. Aghdam (was at Sheffield, now gone...sailed for better unknown shores)
- Discs and rings: Stan Hahn (Honeywell), Claudia Alvarenga, Paolo Olivucci (Sheffield), Daniel Wise (Singapore)
- Laminar traveling waves: Peter Hicks (Aberdeen)

FINANCIAL SUPPORT

- Airbus: Dr Stephen Rolston, Dr Richard Ashworth
- Department of Mechanical Engineering, University of Sheffield
- A* Star Singapore
- Iraqi goverment
- EPSRC First Grant
- H2020 FU

PASSIVE: HYDROPHOBIC SURFACES

- Shear-dependent slip length mode
- Power spent on the surface: passive-absorbing

ACTIVE: ROTATING RINGS

- Forced rotating discs
- Freely rotating discs
- Spinning rings

- Numerical and asymptotic study of full parameter space
- Analytical solutions and explain an unexpected behaviour

PASSIVE: HYDROPHOBIC SURFACES

- Shear-dependent slip length model
- Power spent on the surface: passive-absorbing

ACTIVE: ROTATING RINGS

- Forced rotating disc:
- Freely rotating discs
- Spinning rings

- Numerical and asymptotic study of full parameter space
- Analytical solutions and explain an unexpected behaviour

PASSIVE: HYDROPHOBIC SURFACES

- Shear-dependent slip length model
- Power spent on the surface: passive-absorbing

ACTIVE: ROTATING RINGS

- Forced rotating discs
- Freely rotating discs
- Spinning rings

- Numerical and asymptotic study of full parameter space
- Analytical solutions and explain an unexpected behaviour

PASSIVE: HYDROPHOBIC SURFACES

- Shear-dependent slip length model
- Power spent on the surface: passive-absorbing

ACTIVE: ROTATING RINGS

- Forced rotating discs
- Freely rotating discs
- Spinning rings

- Numerical and asymptotic study of full parameter space
- Analytical solutions and explain an unexpected behaviour

HYDROPHOBIC SURFACES

MODELLING OF HYDROPHOBIC SURFACES

SLIP-LENGTH SURFACE MODEL

$$u(0) = l_s \left. \frac{\partial u}{\partial y} \right|_{y=0}$$

- Slip length Is: constant
- It traces back a long time: Navier (1823)
- Used widely to model laminar, transitional and turbulent flows
- Limitation: no capturing of exact texture

SLIP/NO-SLIP SURFACE MODEL

$$u(0)=0$$
 over solid wall, $\left.\frac{\partial u}{\partial y}\right|_{y=0}=0$ over air pockets

- Limitations
 - → wall-roughness effects, liquid-air interaction
 - → bubble deformation, *power spent is zero?!*

MODELLING OF HYDROPHOBIC SURFACES

SLIP-LENGTH SURFACE MODEL

$$u(0) = I_s \left. \frac{\partial u}{\partial y} \right|_{y=0}$$

- Slip length Is: constant
- It traces back a long time: Navier (1823)
- Used widely to model laminar, transitional and turbulent flows
- Limitation: no capturing of exact texture

SLIP/NO-SLIP SURFACE MODEL

$$u(0)=0$$
 over solid wall, $\left.\frac{\partial u}{\partial y}\right|_{y=0}=0$ over air pockets

- Limitations
 - → wall-roughness effects, liquid-air interaction
 - → bubble deformation, power spent is zero?!

MODELLING OF HYDROPHOBIC SURFACES

SLIP-LENGTH SURFACE MODEL

$$\left| u(0) = I_s \left. \frac{\partial u}{\partial y} \right|_{y=0}$$

- Slip length Is: constant
- It traces back a long time: Navier (1823)
- Used widely to model laminar, transitional and turbulent flows
- Limitation: no capturing of exact texture

SLIP/NO-SLIP SURFACE MODEL

$$u(0)=0$$
 over solid wall, $\left.\frac{\partial u}{\partial y}\right|_{y=0}=0$ over air pockets

- Limitations
 - → wall-roughness effects, liquid-air interaction
 - → bubble deformation, *power spent is zero?!*

- Molecular dynamics simulations Thompson, Troian (1997)
- Mentioned in theoretical works Lauga, Stone (2003)
- Laminar-flow experiments Choi et al. (2003), Choi, Kim (2006)
 - \rightarrow I_s = 50 microns
- Recognized as relevant in DNS studies
 - → Min, Kim (2004); Busse, Sandham (2012)
 - Jung, Choi, Kim JFM (2016): DNS of water flowing on air pockets
 - ightarrow air flow is simulated ightarrow cavity recirculation, for example
 - → constant-slip-length model is NOT valid

- Molecular dynamics simulations Thompson, Troian (1997)
- Mentioned in theoretical works Lauga, Stone (2003)
- Laminar-flow experiments Choi et al. (2003), Choi, Kim (2006)
 - \rightarrow I_s = 50 microns
- Recognized as relevant in DNS studies
 - → Min, Kim (2004); Busse, Sandham (2012)
- Jung, Choi, Kim JFM (2016): DNS of water flowing on air pockets
 - ightarrow air flow is simulated ightarrow cavity recirculation, for example
 - → constant-slip-length model is NOT valid

- Molecular dynamics simulations Thompson, Troian (1997)
- Mentioned in theoretical works Lauga, Stone (2003)
- Laminar-flow experiments Choi et al. (2003), Choi, Kim (2006)
 - \rightarrow I_s = 50 microns
- Recognized as relevant in DNS studies
 - → Min, Kim (2004); Busse, Sandham (2012)
- Jung, Choi, Kim JFM (2016): DNS of water flowing on air pockets
 - \rightarrow air flow is simulated \rightarrow cavity recirculation, for example
 - ightarrow constant-slip-length model is NOT valid

- Molecular dynamics simulations Thompson, Troian (1997)
- Mentioned in theoretical works Lauga, Stone (2003)
- Laminar-flow experiments Choi et al. (2003), Choi, Kim (2006)
 - \rightarrow I_s = 50 microns
- Recognized as relevant in DNS studies
 - → Min, Kim (2004); Busse, Sandham (2012)
- Jung, Choi, Kim JFM (2016): DNS of water flowing on air pockets
 - \rightarrow air flow is simulated \rightarrow cavity recirculation, for example
 - ightarrow constant-slip-length model is NOT valid

OBJECTIVE

OBJECTIVE

- Turbulent channel flow
- Linear dependence of slip length on wall shear

$$\left| I_{s} = \mathbf{a} \left. \frac{\partial u}{\partial y} \right|_{y=0} + \mathbf{b} \right|$$

Aghdam, Ricco Phys. Fluids (2016)

We have extracted instantaneous slip length from Jung et al. JFM (2016)

Slip length shear-dependent along x, not along z

For this case → model works well a finite, b small

We compute very close drag reduction values

OBJECTIVE

OBJECTIVE

- Turbulent channel flow
- Linear dependence of slip length on wall shear

$$\left| I_{s} = \mathbf{a} \left. \frac{\partial u}{\partial y} \right|_{y=0} + \mathbf{b} \right|$$

- Aghdam, Ricco Phys. Fluids (2016)

We have extracted instantaneous slip length from Jung et al. JFM (2016)

Slip length shear-dependent along x, not along z

For this case → model works well a finite, b small

We compute very close drag reduction values

FUKAGATA-KASAGI-KOUMOUTSAKOS ANALYSIS

FUKAGATA et al. (POF) (2006)

$$\frac{\mathbf{a}\left(1-\mathcal{R}^{\star}\right)}{R_{\rho}}\frac{R_{\tau,r}^{3}}{R_{\rho}}+\mathbf{b}R_{\tau,r}=\left(\kappa^{-1}\ln R_{\tau,r}+F\right)\frac{1-\sqrt{1-\mathcal{R}^{\star}}}{1-\mathcal{R}^{\star}}-\frac{\ln\left(1-\mathcal{R}^{\star}\right)}{2\kappa\sqrt{1-\mathcal{R}^{\star}}}$$

Implicit relationship to find $\mathcal{R}^* = \mathcal{R}^*(a, b; R_{\tau,r}) = \mathcal{R}/100$ \mathcal{R} increases with a and b

Averaged slip length \mathcal{L} can be introduced

$$\left| \frac{a(1 - \mathcal{R}^{\star}) R_{\tau,r}^2}{R_p} + b = a \frac{d\mathcal{U}}{dy} \right|_{y=0} + b = b - a \frac{dP}{dx} R_p = \mathcal{L}$$

This shows that $\left|\mathcal{R}=\mathcal{R}(\mathcal{L};R_{ au,r})\right|$ irrespectively of a and b

Flows with same $\mathcal R$ have the same averaged slip velocity $\mathcal U(0)$

FUKAGATA-KASAGI-KOUMOUTSAKOS ANALYSIS

FUKAGATA et al. (POF) (2006)

$$\frac{\mathbf{a}\left(1-\mathcal{R}^{\star}\right)}{R_{p}}\frac{R_{\tau,r}^{3}}{R_{p}}+\frac{\mathbf{b}}{R_{\tau,r}}=\left(\kappa^{-1}\ln R_{\tau,r}+F\right)\frac{1-\sqrt{1-\mathcal{R}^{\star}}}{1-\mathcal{R}^{\star}}-\frac{\ln\left(1-\mathcal{R}^{\star}\right)}{2\kappa\sqrt{1-\mathcal{R}^{\star}}}$$

Implicit relationship to find $\mathcal{R}^{\star}=\mathcal{R}^{\star}(a,b;R_{\tau,r})=\mathcal{R}/100$

 ${\cal R}$ increases with ${\it a}$ and ${\it b}$

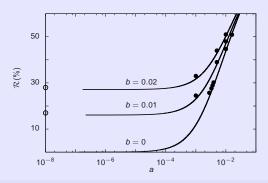
Averaged slip length \mathcal{L} can be introduced

$$\frac{a(1-\mathcal{R}^{\star})R_{\tau,r}^{2}}{R_{p}}+b=a\frac{\mathrm{d}\mathcal{U}}{\mathrm{d}y}\bigg|_{y=0}+b=b-a\frac{\mathrm{d}P}{\mathrm{d}x}R_{p}=\mathcal{L}$$

This shows that $\mathcal{R} = \mathcal{R}(\mathcal{L}; R_{\tau,r})$ irrespectively of a and b

Flows with same $\mathcal R$ have the same averaged slip velocity $\mathcal U(0)$

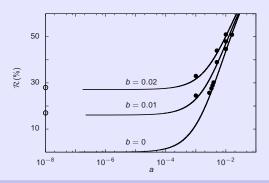
FUKAGATA-KASAGI-KOUMOUTSAKOS THEORY - DNS



COMPARISON FUKAGATA - DNS

- Very good agreement between FKK theory and DNS
- Flow parameters in the laboratory: water channe
 - Channel height $2h^* = 3.4$ mm
 - Bulk velocity $\mathcal{U}_b^* = 1.6$ m/s
 - $-b^*=35~\mu{
 m m},\,a^*=0.01\mu{
 m m}\,{
 m s}$
 - a* value is 10 times smaller than in Choi Kim PRL (2006)!
 - Shear-dependence may play a significant role → high wall-shear stress

FUKAGATA-KASAGI-KOUMOUTSAKOS THEORY - DNS



COMPARISON FUKAGATA - DNS

- Very good agreement between FKK theory and DNS
- Flow parameters in the laboratory: water channel
 - Channel height $2h^* = 3.4$ mm
 - Bulk velocity $\mathcal{U}_b^*=$ 1.6m/s $b^*=$ 35 μ m, $\mathbf{a}^*=$ 0.01 μ m s

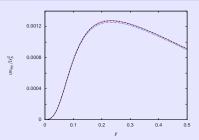
 - a* value is 10 times smaller than in Choi Kim PRL (2006)!
 - Shear-dependence may play a significant role → high wall-shear stress

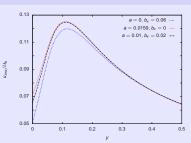
REYNOLDS STRESSES - RMS U VELOCITY

$$\boxed{C_f = \frac{6}{\mathcal{U}_b R_p} - \frac{6}{\mathcal{U}_b^2} \int_0^1 (1 - y) u v_{\text{rey}} dy \boxed{-\frac{6 \, \mathcal{U}(0)}{R_p \mathcal{U}_b^2}}}$$

Flows with the same averaged slip length ${\cal L}$

- Same drag reduction ${\cal R}$
- Same averaged slip velocity $\mathcal{U}(0)$
- Same weighted integrated Reynolds stress profiles





Reynolds stresses agree throught the whole channel

Rms of streamwise velocity do not overlap

POWER BALANCE

$$\mathcal{P}_x + \mathcal{W} + \mathcal{D} = 0$$

Power for x motion $\mathcal{P}_x = 2\mathcal{U}_b L_x L_z \left((R_\tau / R_p) \right)^2$

Power spent at the wall
$$W = -\frac{2}{R_p} \left[\left\langle \textit{U}(0) \; \frac{\partial \textit{U}}{\partial \textit{y}} \; \middle| \; \right\rangle_{\textit{y}=0} \right]_{\textit{Txz}}$$

$$\text{Dissipation into heat} \quad \mathcal{D} = -\frac{1}{R_{\rho}} \left[\left\langle \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \frac{\partial U_i}{\partial x_j} \right\rangle \right]_{\mathcal{I}xyz}$$

POWER AT THE WALL

- Non-negligible: if $\mathcal{R}=40\%$, $\mathcal{W}=15\%$
- $\,\mathcal{W}=0$ for slip/no-slip modelling ightarrow serious issue
- Physics
 - Lotus-leaf surface: power exerted by liquid on air pockets
 - → air motion, stretching, detachment → drag increase
 - Pitcher-plant leaf surface: power exerted by water on infused oil

PASSIVE ABSORBING

- Oscillating-wall, traveling waves: active o power injected into the fluid
- Riblets, wavy wall: passive-neutral ightarrow no power exchanged by fluid and surface
- Hydrophobic surfaces: passive-absorbing → power from fluid, absorbed by surface

POWER BALANCE

$$P_x + W + D = 0$$

Power for x motion $\mathcal{P}_x = 2\mathcal{U}_b L_x L_z \left((R_\tau / R_p) \right)^2$

Power spent at the wall
$$W = -\frac{2}{R_p} \left[\left\langle \textit{U}(0) \; \frac{\partial \textit{U}}{\partial \textit{y}} \, \right| \right\rangle_{\textit{y}=0} \right]_{\textit{Txz}}$$

Dissipation into heat
$$\mathcal{D} = -\frac{1}{R_p} \left[\left\langle \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \frac{\partial U_i}{\partial x_j} \right\rangle \right]_{\mathcal{I}_{XYZ}}$$

POWER AT THE WALL

- Non-negligible: if $\mathcal{R}=40\%$, $\mathcal{W}=15\%$
- $\mathcal{W}=0$ for slip/no-slip modelling ightarrow serious issue
- Physics
 - Lotus-leaf surface: power exerted by liquid on air pockets
 → air motion, stretching, detachment → drag increase
 - Pitcher-plant leaf surface: power exerted by water on infused oil

PASSIVE ABSORBING

- Oscillating-wall, traveling waves: active \rightarrow power injected into the fluid
- Riblets, wavy wall: passive-neutral ightarrow no power exchanged by fluid and surface
- Hydrophobic surfaces: passive-absorbing → power from fluid, absorbed by surface

POWER BALANCE

$$\mathcal{P}_{x} + \mathcal{W} + \mathcal{D} = 0$$

Power for x motion $\mathcal{P}_x = 2\mathcal{U}_b L_x L_z \left((R_\tau / R_p) \right)^2$

Power spent at the wall
$$W = -\frac{2}{R_p} \left[\left\langle \textit{U}(0) \; \frac{\partial \textit{U}}{\partial \textit{y}} \, \right| \right\rangle_{\textit{y}=0} \right]_{\textit{Txz}}$$

Dissipation into heat
$$\mathcal{D} = -\frac{1}{R_{\rho}} \left[\left\langle \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \frac{\partial U_i}{\partial x_j} \right\rangle \right]_{\mathcal{I}_{xyz}}$$

POWER AT THE WALL

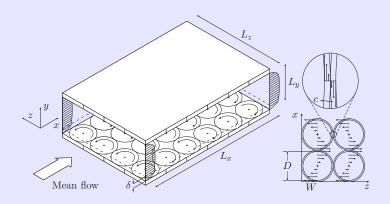
- Non-negligible: if $\mathcal{R}=40\%$, $\mathcal{W}=15\%$
- $\mathcal{W}=$ 0 for slip/no-slip modelling ightarrow serious issue
- Physics
 - Lotus-leaf surface: power exerted by liquid on air pockets

 air motion, stretching, detachment
 drag increase
 - Pitcher-plant leaf surface: power exerted by water on infused oil

PASSIVE ABSORBING

- Oscillating-wall, traveling waves: active \rightarrow power injected into the fluid
- Riblets, wavy wall: passive-neutral → no power exchanged by fluid and surface
- Hydrophobic surfaces: passive-absorbing → power from fluid, absorbed by surface

SPINNING DISCS

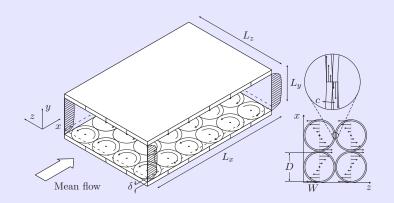


First proposed by L. Keefe (1998), but no results

Fully-developed turbulent channel flow $R_{\tau}=180$ - DNS: x,z Fourier, y Chebyshev

Parameters: D diameter, W maximum tip velocity

Discs neighbouring along z: same sense of rotation

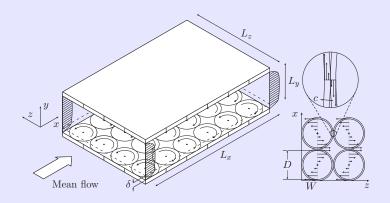


First proposed by L. Keefe (1998), but no results

Fully-developed turbulent channel flow $R_{\tau}=180$ - DNS: x,z Fourier, y Chebyshev

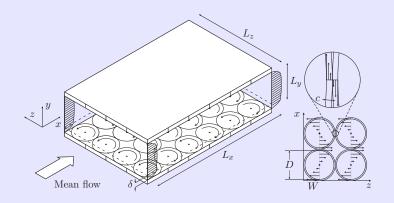
Parameters: D diameter, W maximum tip velocity

Discs neighbouring along z: same sense of rotation



First proposed by L. Keefe (1998), but no results Fully-developed turbulent channel flow $R_{ au}=$ 180 - DNS: x,z Fourier, y Chebyshev Parameters: D diameter, W maximum tip velocity

Discs neighbouring along z: same sense of rotation



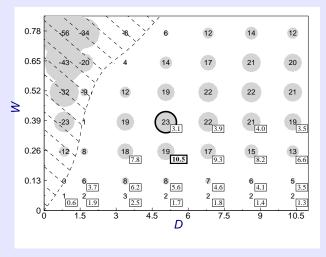
First proposed by L. Keefe (1998), but no results

Fully-developed turbulent channel flow $R_{ au}=$ 180 - DNS: x,z Fourier, y Chebyshev

Parameters: D diameter, W maximum tip velocity

Discs neighbouring along z: same sense of rotation

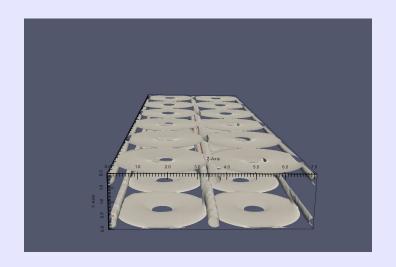
MAP OF DRAG REDUCTION: OUTER UNITS



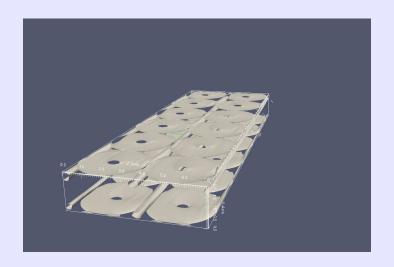
Drag *increase* may occur at small D, large W Maximum $\mathcal{R}=23\%$, maximum $\mathcal{P}_{net}=10\%$

Optimum in wall units: $D^+ \approx 1000, W^+ \approx 10$

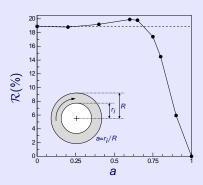
FLOW VIS



FLOW VIS



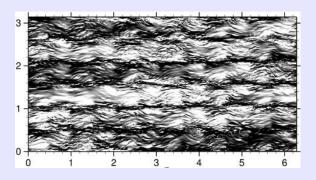
RINGS



- a < 0.38, R constant
- a=0.6, optimum ${\cal R}$
- → higher than with full disc
- \rightarrow flow motion toward the wall is reduced
- ightarrow von Kármán pump effect
- $a \rightarrow 1$, $\mathcal{R} \rightarrow 0$

REYNOLDS NUMBER EFFECT

COLLABORATION WITH PIROZZOLI, BERNARDINI "LA SAPIENZA"



$$R_b = 80,000, R_\tau = 2,000$$
 $\mathcal{R} = 16\%$

Contour of instantaneous $u^{'+}$ at $y^{+} = 15$

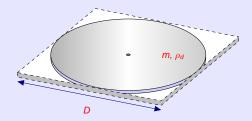
Streaks persist, but dragged by spinning disc motion

Large scales: combination of imprint from outer super-structures and disc rotation

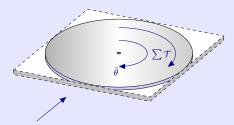
FREELY ROTATING DISCS

FREELY-ROTATING DISCS

DESCRIPTION OF SYSTEM



- Discs on the channel walls: diameter D, thickness t, density ρ_d , mass m
- Fluid flow over discs causes turbulent torque, \mathcal{T}_t
- Rolling friction from the bearing F_m
- ullet Fluid friction from the disc housing, \mathcal{F}_f



Mean flow

EQUATION OF MOTION

$$J\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} = \sum \mathcal{T}$$

$$\sum \mathcal{T}$$
= $\mathcal{T}_t - \mathcal{F}_m - \mathcal{F}_f$: sum of torques

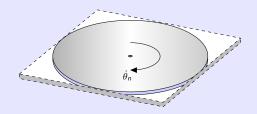
 $J = \frac{mD^2}{8}$: moment of inertia

 $\frac{d^2\theta}{dt^2}$: angular acceleration

First discretize in time: $\dot{ heta}_{n+1}$ = $\dot{ heta}_n+(\Delta t/J)\sum \mathcal{T}$

Turbulent torque, $\mathcal{T}_t = \int_0^R \int_0^{2\pi} \tau_\theta r(r d\theta) dr$

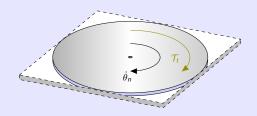
Fluid friction torque from housing of disc: $\mathcal{F}_{t} = -\kappa |\dot{\theta}|^{3/2}$



First discretize in time: $\dot{ heta}_{n+1}$ = $\dot{ heta}_n+(\Delta t/J)\sum \mathcal{T}$

Turbulent torque, $\mathcal{T}_t = \int_0^R \int_0^{2\pi} \tau_\theta r(r d\theta) dr$

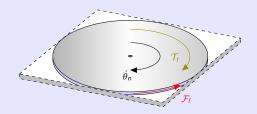
Fluid friction torque from housing of disc: $\mathcal{F}_{t} = -\kappa |\dot{\theta}|^{3/2}$



First discretize in time: $\dot{ heta}_{n+1}$ = $\dot{ heta}_n+(\Delta t/J)\sum \mathcal{T}$

Turbulent torque, $\mathcal{T}_t = \int_0^R \int_0^{2\pi} \tau_\theta r(r d\theta) dr$

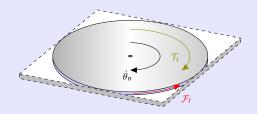
Fluid friction torque from housing of disc: $\mathcal{F}_{t} = -\kappa |\dot{\theta}|^{3/2}$



First discretize in time: $\dot{ heta}_{n+1}$ = $\dot{ heta}_n+(\Delta t/J)\sum \mathcal{T}$

Turbulent torque, $\mathcal{T}_t = \int_0^R \int_0^{2\pi} \tau_\theta r(r d\theta) dr$

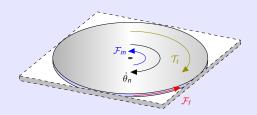
Fluid friction torque from housing of disc: $\mathcal{F}_{t} = -\kappa |\dot{\theta}|^{3/2}$



First discretize in time: $\dot{ heta}_{n+1}$ = $\dot{ heta}_n+(\Delta t/J)\sum \mathcal{T}$

Turbulent torque, $\mathcal{T}_t = \int_0^R \int_0^{2\pi} \tau_\theta r(r d\theta) dr$

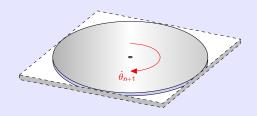
Fluid friction torque from housing of disc: $\mathcal{F}_{t} = -\kappa |\dot{\theta}|^{3/2}$



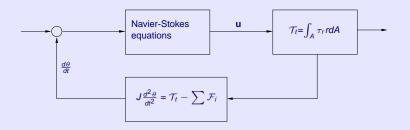
First discretize in time: $\dot{\theta}_{n+1}$ = $\dot{\theta}_n + (\Delta t/J) \sum \mathcal{T}$

Turbulent torque, $\mathcal{T}_t = \int_0^R \int_0^{2\pi} \tau_\theta r(r d\theta) dr$

Fluid friction torque from housing of disc: $\mathcal{F}_{t} = -\kappa |\dot{\theta}|^{3/2}$



DISCS IN FEEDBACK



Freely rotating discs can be seen as a feedback system

Wall boundary conditions are not pre-determined

Each disc moves independently

Disc dynamics is fully coupled with turbulent flow dynamics

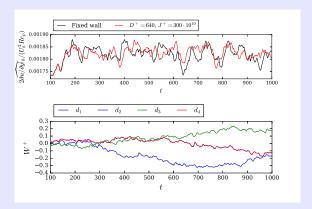
FREELY ROTATING DISCS

Water channel: $\textit{U}_{\textit{b}}$ =0.32ms $^{-1}$, h=0.1m \rightarrow $\textit{R}_{\textit{b}}$ =3160, \textit{R}_{τ} =180

 D^+ =640 \rightarrow , *J* for Titanium, *D*=35mm

No drag reduction \rightarrow maximum disc-tip velocity is W_m^+ <0.5

J reduced to non-realistic values \rightarrow drag reduction



SWITCHING DISCS ON/OFF

Switching discs off/on when threshold tip velocity is reached

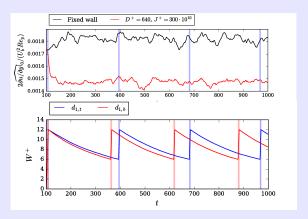
 D^+ =640 \rightarrow Lower threshold: W_i^+ =6, Upper: W_{ii}^+ =12

Drag reduction $\mathcal{R}=19\%$ Power spent $\mathcal{P}_{sp}=10\%$

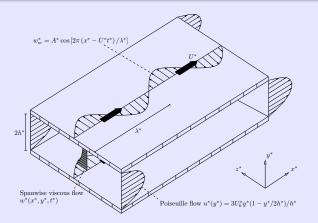
Better than standard rotating cases

$$W^{+}$$
=6: \mathcal{R} =17.6%, \mathcal{P}_{sp} =10.1%

$$W^+$$
=12: \mathcal{R} =12.3%, \mathcal{P}_{sp} =43.5%



LAMINAR TRAVELING WAVES



Spanwise laminar flow can be used to study drag-reduced turbulent flow

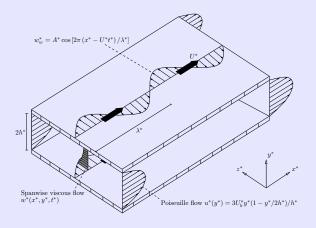
Space-averaged spanwise turbulent flow

Power spent by the waves

Scaling parameter

Stokes layer thickness

Modelling



We did some work on laminar wave flow \to but Stokes layer was assumed thin $\delta \ll h$ But interesting flow features may occur when $\delta = \mathcal{O}(h)$

Thus we have carried out a full asymptotic and numerical study on laminar flow \to final objective is turbulent drag reduction modelling

To appear in J. Eng. Math.

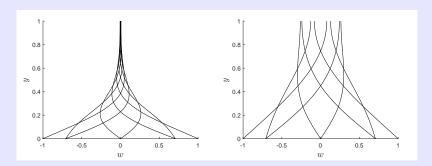
$$\underbrace{ \textit{W}''(\textit{y})}_{\textit{y-diffusion}} + \left(\underbrace{\frac{3\pi \textit{iR}}{\lambda} \textit{y}^2 - \frac{6\pi \textit{iR}}{\lambda} \textit{y}}_{\textit{Poiseuille convection}} \underbrace{+ \frac{2\pi \textit{iRU}}{\lambda} - \frac{4\pi^2}{\lambda^2}}_{\textit{wave convection } \textit{x-diffusion}}\right) \textit{Wy} = 0,$$

$$W(0)=W(2)=1$$

Parabolic cylinder function

$$w(x, y, t; R, U, \lambda) = \Re \left\{ \frac{\mathcal{D}_a[\phi(1-y)] + \mathcal{D}_a[\phi(y-1)]}{\mathcal{D}_a(\phi) + \mathcal{D}_a(-\phi)} e^{2\pi i(x-t)} \right\}$$

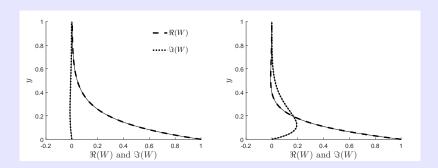
:-(But not that useful...



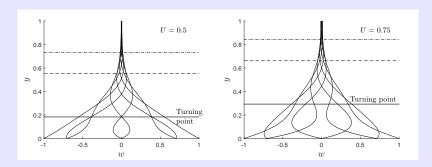
Steady waves

$$W(y) = \frac{P_0^{1/4} (1 - e^{-\psi})}{2P(y)^{1/4} \sinh \psi} \left(\frac{y - 1 + \alpha(y)}{\sqrt{b} - 1} \right)^{\gamma(1 - b)} \exp \left[\alpha(y) \gamma (1 - y) - \gamma \sqrt{b} \right] + \frac{P_0^{1/4} (e^{\psi} - 1)}{2P(y)^{1/4} \sinh \psi} \left(\frac{\sqrt{b} - 1}{y - 1 + \alpha(y)} \right)^{\gamma(1 - b)} \exp \left[\alpha(y) \gamma (y - 1) + \gamma \sqrt{b} \right],$$

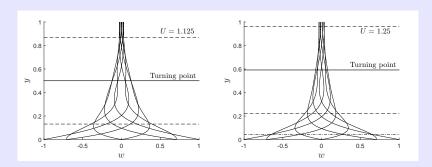
WKBJ solution valid for $\delta = \mathcal{O}(h)$



WKBJ asymptotic solution and numerical solution match ...but NOT valid for U_{waves} close to U_{bulk}



Traveling waves with U_{wave} comparable with U_{bulk} Unexpected wiggly behaviour ...not a Stokes layer



Traveling waves with U_{wave} comparable with U_{bulk} Unexpected wiggly behaviour ...not a Stokes layer

WKBJ composite solution valid for U_{waves} close to U_{bulk} ...but too complicated

Thanks to asymptotic analysis \to wiggly behaviour occurs when convection due to waves balances convection due to wave transport

$$W(y) = \left[-\frac{i\eta(y)}{\overline{P}(y)} \right]^{1/4} \left\{ a_{\mathsf{L}} \mathsf{Ai} \left[\epsilon^{-1/3} \eta(y) \right] + b_{\mathsf{L}} \mathsf{Bi} \left[\epsilon^{-1/3} \eta(y) \right] \right\}$$
$$\eta(y) = \begin{cases} \left[\frac{3}{2} \sqrt{i} \kappa(y) \right]^{2/3}, & \text{for } y > y_0, \\ -\left[-\frac{3}{2} \sqrt{i} \kappa(y) \right]^{2/3}, & \text{for } y < y_0, \end{cases}$$

Asymptotic Langer-method solution for wiggly case Next step: turbulence modeling...

WKBJ composite solution valid for U_{waves} close to U_{bulk} ...but too complicated

Thanks to asymptotic analysis \rightarrow wiggly behaviour occurs when convection due to waves balances convection due to wave transport

$$W(y) = \left[-\frac{i\eta(y)}{\overline{P}(y)} \right]^{1/4} \left\{ a_{L} \operatorname{Ai} \left[\epsilon^{-1/3} \eta(y) \right] + b_{L} \operatorname{Bi} \left[\epsilon^{-1/3} \eta(y) \right] \right\},$$

$$\eta(y) = \left\{ \begin{bmatrix} \frac{3}{2} \sqrt{i} \kappa(y) \end{bmatrix}^{2/3}, & \text{for } y > y_{0}, \\ -\left[-\frac{3}{2} \sqrt{i} \kappa(y) \right]^{2/3}, & \text{for } y < y_{0}, \end{bmatrix} \right\}$$

Asymptotic Langer-method solution for wiggly case Next step: turbulence modeling...

THANKS!