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What is the objective:

Local skin friction reduction or integral drag reduction?
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Riblets have proven their drag reducing potential in real life applications 12
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Airbus A30with Riblet surface Riblet geometry on Speedo
(taken from [1]). Fastskin swimsuit (taken from [2]).

Can active drag reduction methods reach the same stage or even be combined
with riblets?

=) Key necessities for robust active drag reduction:
® Integrationinto current aircraft design
=  Low power input
® Small geometry changes
" Reduction of the integrated drag

Lszodruch (1991, AIAA Paper)
2Dean and Barat (2010, Philos. Trans. R. Soc. London, Ser. A)




Spanwise traveling surface waves AN ™

The concept of spanwise traveling transversal surface waves offers some
advantages for real applications:

= Tested in wind-tunnel experiments using
actuated aluminum sheets 3.

— % /
= Mechanism allows drag reduction over large sur- £ P
face areas without adding major disturbances to f
the flow. u

® Validated by experimental and numerical investigations? for drag reduction
in turbulent boundary layers.

®= No limitation on the surface type, can be combined with a ribbed surface
= hybrid method.

e

3Meysonnatet al. (2016,Eur. J. Mech. B. Fluids)
4Koh et al. (2015,Comput. Fluids)



Numerical Method AN |

A node-centered finite volume method to solve the unsteady compressible viscous Navier-Stokes equations

Structured curvilinear meshes.

Convective flux discretization by the Advection Upstream Splitting Method (AUSM)
Implicit LES (MILES).

Temporal integration by a linear 5-stage Runge-Kutta scheme.

Moving grid method using ALE formulation and Geometry Conservation Law (GCL).
Synthetic turbulence generation method which efficiently reduces the LES transition lengths.

= Unique approach to accurately resolve the riblet structure on moving
meshes in turbulent boundary layer flow.
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General Testcase Setup AN ™

Wall actuation function: 4

2 2m
y+ I (Z+, t+) = A*cos </1—+Z+ + T—+t+>
wa



General Testcase Setup AN ™

Parameter Value
Ma, 0.2
. . . Reg 1,000
The investigated cases are combinations of: Jn 2
= smooth/ribbed surface ay* 0.85
- Az* 0.9,3.75
non-actuated/actuated wall _— 148 106
= actuation amplitudes At = 10 — 70 Siptets 15
AY = dug /v 0-70
At = ug /v 500,1000
ct=2a+T* 125,25
st =15 At =500,1000
e " ‘
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Actuated smooth flat plate



Drag reduction depending on the amplitude AN ™

Highest achievable integral drag reduction rate is a tradeoff between actuation
strength and increase of the wetted surface (f (4, A)).
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Drag reduction depending on the wavelength AN ™

Long wavelengths are not only favorable in a drag reduction sense, but also for a
technical application to avoid strong bending.
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Actuated ribbed surface



Turbulent Flow Field above the Traveling Wave AN ™

Vortical structures visualized by the Q-criterion (Q = 0.02).

(a) Smooth surface actuated A* = 10  (b) Riblet surface actuated A* = 10
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Secondary flow field of the spanwise velocity componentin the y — z plane for the actuated smooth setup
(top) and the actuated riblet setup (bottom).



Streamwise Vorticity Fluctuations AN ™
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Contours of the root-mean-square streamwise vorticity intensity.



Drag Reduction over Time AN [T
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Drag Reduction over Time
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Velocity Distribution Non-Combined Methods
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Velocity Distribution Combined Method
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Streamwise Reynolds Stresses
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Wall-normal Vorticity Fluctuations AN ™
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®  Focus on integral drag reduction with technically feasible methods.

= | ong wavelengths are favorable for high drag reduction and also in the
technical application sense.

® Drag reduction can be increased by a combination of passive and active
methods.

® No simple superposition of the drag reduction rates.

® Drag reduction is more robust with hybrid method.
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