Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Cyras K, Oliveira T, Karamlou M, Toni Fet al., 2021,

    Assumption-based argumentation with preferences and goals for patient-centric reasoning with interacting clinical guidelines

    , Argument and Computation, Vol: 12, Pages: 149-189, ISSN: 1946-2166

    A paramount, yet unresolved issue in personalised medicine is that of automated reasoning with clinical guidelines in multimorbidity settings. This entails enabling machines to use computerised generic clinical guideline recommendations and patient-specific information to yield patient-tailored recommendations where interactions arising due to multimorbidities are resolved. This problem is further complicated by patient management desiderata, in particular the need to account for patient-centric goals as well as preferences of various parties involved. We propose to solve this problem of automated reasoning with interacting guideline recommendations in the context of a given patient by means of computational argumentation. In particular, we advance a structured argumentation formalism ABA+G (short for Assumption-Based Argumentation with Preferences (ABA+) and Goals) for integrating and reasoning with information about recommendations, interactions, patient’s state, preferences and prioritised goals. ABA+G combines assumption-based reasoning with preferences and goal-driven selection among reasoning outcomes. Specifically, we assume defeasible applicability of guideline recommendations with the general goal of patient well-being, resolve interactions (conflicts and otherwise undesirable situations) among recommendations based on the state and preferences of the patient, and employ patient-centered goals to suggest interaction-resolving, goal-importance maximising and preference-adhering recommendations. We use a well-established Transition-based Medical Recommendation model for representing guideline recommendations and identifying interactions thereof, and map the components in question, together with the given patient’s state, prioritised goals, and preferences over actions, to ABA+G for automated reasoning. In this, we follow principles of patient management and establish corresponding theoretical properties as well as illustrate our approach in realis

  • Conference paper
    Frazelle C, Walker I, AlAttar A, Kormushev Pet al., 2021,

    Kinematic-model-free control for space operations with continuum Manipulators

    , USA, IEEE Conference on Aerospace, Publisher: IEEE, Pages: 1-11, ISSN: 1095-323X

    Continuum robots have strong potential for application in Space environments. However, their modeling is challenging in comparison with traditional rigid-link robots. The Kinematic-Model-Free (KMF) robot control method has been shown to be extremely effective in permitting a rigid-link robot to learn approximations of local kinematics and dynamics (“kinodynamics”) at various points in the robot's task space. These approximations enable the robot to follow various trajectories and even adapt to changes in the robot's kinematic structure. In this paper, we present the adaptation of the KMF method to a three-section, nine degrees-of-freedom continuum manipulator for both planar and spatial task spaces. Using only an external 3D camera, we show that the KMF method allows the continuum robot to converge to various desired set points in the robot's task space, avoiding the complexities inherent in solving this problem using traditional inverse kinematics. The success of the method shows that a continuum robot can “learn” enough information from an external camera to reach and track desired points and trajectories, without needing knowledge of exact shape or position of the robot. We similarly apply the method in a simulated example of a continuum robot performing an inspection task on board the ISS.

  • Journal article
    Chapman M, Domínguez J, Fairweather E, Delaney BC, Curcin Vet al., 2021,

    Using Computable Phenotypes in Point-of-Care Clinical Trial Recruitment.

    , Stud Health Technol Inform, Vol: 281, Pages: 560-564

    A key challenge in point-of-care clinical trial recruitment is to autonomously identify eligible patients on presentation. Similarly, the aim of computable phenotyping is to identify those individuals within a population that exhibit a certain condition. This synergy creates an opportunity to leverage phenotypes in identifying eligible patients for clinical trials. To investigate the feasibility of this approach, we use the Transform clinical trial platform and replace its archetype-based eligibility criteria mechanism with a computable phenotype execution microservice. Utilising a phenotype for acute otitis media with discharge (AOMd) created with the Phenoflow platform, we compare the performance of Transform with and without the use of phenotype-based eligibility criteria when recruiting AOMd patients. The parameters of the trial simulated are based on those of the REST clinical trial, conducted in UK primary care.

  • Journal article
    AlAttar A, Cursi F, Kormushev P, 2021,

    Kinematic-model-free redundancy resolution using multi-point tracking and control for robot manipulation

    , Applied Sciences, Vol: 11, Pages: 1-15, ISSN: 2076-3417

    Abstract: Robots have been predominantly controlled using conventional control methods that require prior knowledge of the robots’ kinematic and dynamic models. These controllers can be challenging to tune and cannot directly adapt to changes in kinematic structure or dynamic properties. On the other hand, model-learning controllers can overcome such challenges.Our recently proposed model-learning orientation controller has shown promising ability to simul6 taneously control a three-degrees-of-freedom robot manipulator’s end-effector pose. However, this controller does not perform optimally with robots of higher degrees-of-freedom nor does it resolve redundancies. The research presented in this paper extends the state-of-the-art kinematic9 model-free controller to perform pose control of hyper-redundant robot manipulators and resolve redundancies by tracking and controlling multiple points along the robot’s serial chain. The results show that with more control points, the controller is able to reach desired poses in fewer steps, yielding an improvement of up to 66%, and capable of achieving complex configurations. The algorithm was validated by running the simulation 100 times and it was found that 82% of the times the robot successfully reached the desired target pose within 150 steps.

  • Conference paper
    Dejl A, He P, Mangal P, Mohsin H, Surdu B, Voinea E, Albini E, Lertvittayakumjorn P, Rago A, Toni Fet al., 2021,

    Argflow: a toolkit for deep argumentative explanations for neural networks

    , Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems, Pages: 1761-1763, ISSN: 1558-2914

    In recent years, machine learning (ML) models have been successfully applied in a variety of real-world applications. However, theyare often complex and incomprehensible to human users. This candecrease trust in their outputs and render their usage in criticalsettings ethically problematic. As a result, several methods for explaining such ML models have been proposed recently, in particularfor black-box models such as deep neural networks (NNs). Nevertheless, these methods predominantly explain outputs in termsof inputs, disregarding the inner workings of the ML model computing those outputs. We present Argflow, a toolkit enabling thegeneration of a variety of ‘deep’ argumentative explanations (DAXs)for outputs of NNs on classification tasks.

  • Journal article
    Myall AC, Peach RL, Weiße AY, Davies F, Mookerjee S, Holmes A, Barahona Met al., 2021,

    Network memory in the movement of hospital patients carrying drug-resistant bacteria

    , Applied Network Science, Vol: 6, ISSN: 2364-8228

    Hospitals constitute highly interconnected systems that bring into contact anabundance of infectious pathogens and susceptible individuals, thus makinginfection outbreaks both common and challenging. In recent years, there hasbeen a sharp incidence of antimicrobial-resistance amongsthealthcare-associated infections, a situation now considered endemic in manycountries. Here we present network-based analyses of a data set capturing themovement of patients harbouring drug-resistant bacteria across three largeLondon hospitals. We show that there are substantial memory effects in themovement of hospital patients colonised with drug-resistant bacteria. Suchmemory effects break first-order Markovian transitive assumptions andsubstantially alter the conclusions from the analysis, specifically on noderankings and the evolution of diffusive processes. We capture variable lengthmemory effects by constructing a lumped-state memory network, which we then useto identify overlapping communities of wards. We find that these communities ofwards display a quasi-hierarchical structure at different levels of granularitywhich is consistent with different aspects of patient flows related to hospitallocations and medical specialties.

  • Conference paper
    Tavakoli A, Fatemi M, Kormushev P, 2021,

    Learning to represent action values as a hypergraph on the action vertices

    , Vienna, Austria, International Conference on Learning Representations

    Action-value estimation is a critical component of many reinforcement learning(RL) methods whereby sample complexity relies heavily on how fast a good estimator for action value can be learned. By viewing this problem through the lens ofrepresentation learning, good representations of both state and action can facilitateaction-value estimation. While advances in deep learning have seamlessly drivenprogress in learning state representations, given the specificity of the notion ofagency to RL, little attention has been paid to learning action representations. Weconjecture that leveraging the combinatorial structure of multi-dimensional actionspaces is a key ingredient for learning good representations of action. To test this,we set forth the action hypergraph networks framework—a class of functions forlearning action representations in multi-dimensional discrete action spaces with astructural inductive bias. Using this framework we realise an agent class basedon a combination with deep Q-networks, which we dub hypergraph Q-networks.We show the effectiveness of our approach on a myriad of domains: illustrativeprediction problems under minimal confounding effects, Atari 2600 games, anddiscretised physical control benchmarks.

  • Journal article
    Espinosa-Gonzalez AB, Neves AL, Fiorentino F, Prociuk D, Husain L, Ramtale SC, Mi E, Mi E, Macartney J, Anand SN, Sherlock J, Saravanakumar K, Mayer E, de Lusignan S, Greenhalgh T, Delaney BCet al., 2021,

    Predicting Risk of Hospital Admission in Patients With Suspected COVID-19 in a Community Setting: Protocol for Development and Validation of a Multivariate Risk Prediction Tool

    , JMIR RESEARCH PROTOCOLS, Vol: 10, ISSN: 1929-0748
  • Journal article
    Peach RL, Arnaudon A, Schmidt JA, Palasciano HA, Bernier NR, Jelfs KE, Yaliraki SN, Barahona Met al., 2021,

    HCGA: Highly comparative graph analysis for network phenotyping

    , Patterns, Vol: 2, Pages: 100227-100227, ISSN: 2666-3899

    <jats:title>A<jats:sc>bstract</jats:sc></jats:title><jats:p>Networks are widely used as mathematical models of complex systems across many scientific disciplines, not only in biology and medicine but also in the social sciences, physics, computing and engineering. Decades of work have produced a vast corpus of research characterising the topological, combinatorial, statistical and spectral properties of graphs. Each graph property can be thought of as a feature that captures important (and some times overlapping) characteristics of a network. In the analysis of real-world graphs, it is crucial to integrate systematically a large number of diverse graph features in order to characterise and classify networks, as well as to aid network-based scientific discovery. In this paper, we introduce HCGA, a framework for highly comparative analysis of graph data sets that computes several thousands of graph features from any given network. HCGA also offers a suite of statistical learning and data analysis tools for automated identification and selection of important and interpretable features underpinning the characterisation of graph data sets. We show that HCGA outperforms other methodologies on supervised classification tasks on benchmark data sets whilst retaining the interpretability of network features. We also illustrate how HCGA can be used for network-based discovery through two examples where data is naturally represented as graphs: the clustering of a data set of images of neuronal morphologies, and a regression problem to predict charge transfer in organic semiconductors based on their structure. HCGA is an open platform that can be expanded to include further graph properties and statistical learning tools to allow researchers to leverage the wide breadth of graph-theoretical research to quantitatively analyse and draw insights from network data.</jats:p>

  • Journal article
    Tajnafoi G, Arcucci R, Mottet L, Vouriot C, Molina-Solana M, Pain C, Guo Y-Ket al., 2021,

    Variational Gaussian process for optimal sensor placement

    , Applications of Mathematics, Vol: 66, Pages: 287-317, ISSN: 0373-6725

    Sensor placement is an optimisation problem that has recently gained great relevance. In order to achieve accurate online updates of a predictive model, sensors are used to provide observations. When sensor location is optimally selected, the predictive model can greatly reduce its internal errors. A greedy-selection algorithm is used for locating these optimal spatial locations from a numerical embedded space. A novel architecture for solving this big data problem is proposed, relying on a variational Gaussian process. The generalisation of the model is further improved via the preconditioning of its inputs: Masked Autoregressive Flows are implemented to learn nonlinear, invertible transformations of the conditionally modelled spatial features. Finally, a global optimisation strategy extending the Mutual Information-based optimisation and fine-tuning of the selected optimal location is proposed. The methodology is parallelised to speed up the computational time, making these tools very fast despite the high complexity associated with both spatial modelling and placement tasks. The model is applied to a real three-dimensional test case considering a room within the Clarence Centre building located in Elephant and Castle, London, UK.

  • Journal article
    Sivan M, Rayner C, Delaney B, 2021,

    Fresh evidence of the scale and scope of long covid

    , BMJ-BRITISH MEDICAL JOURNAL, Vol: 373, ISSN: 0959-535X
  • Journal article
    Russell F, Takeda Y, Kormushev P, Vaidyanathan R, Ellison Pet al., 2021,

    Stiffness modulation in a humanoid robotic leg and knee

    , IEEE Robotics and Automation Letters, Vol: 6, Pages: 2563-2570, ISSN: 2377-3766

    Stiffness modulation in walking is critical to maintain static/dynamic stability as well as minimize energy consumption and impact damage. However, optimal, or even functional, stiffness parameterization remains unresolved in legged robotics.We introduce an architecture for stiffness control utilizing a bioinspired robotic limb consisting of a condylar knee joint and leg with antagonistic actuation. The joint replicates elastic ligaments of the human knee providing tuneable compliance for walking. It further locks out at maximum extension, providing stability when standing. Compliance and friction losses between joint surfaces are derived as a function of ligament stiffness and length. Experimental studies validate utility through quantification of: 1) hip perturbation response; 2) payload capacity; and 3) static stiffness of the leg mechanism.Results prove initiation and compliance at lock out can be modulated independently of friction loss by changing ligament elasticity. Furthermore, increasing co-contraction or decreasing joint angle enables increased leg stiffness, which establishes co-contraction is counterbalanced by decreased payload.Findings have direct application in legged robots and transfemoral prosthetic knees, where biorobotic design could reduce energy expense while improving efficiency and stability. Future targeted impact involves increasing power/weight ratios in walking robots and artificial limbs for increased efficiency and precision in walking control.

  • Journal article
    Wu P, Chang X, Yuan W, Sun J, Zhang W, Arcucci R, Guo Yet al., 2021,

    Fast data assimilation (FDA): Data assimilation by machine learning for faster optimize model state

    , JOURNAL OF COMPUTATIONAL SCIENCE, Vol: 51, ISSN: 1877-7503
  • Journal article
    Cyras K, Heinrich Q, Toni F, 2021,

    Computational complexity of flat and generic assumption-based argumentation, with and without probabilities

    , Artificial Intelligence, Vol: 293, Pages: 1-36, ISSN: 0004-3702

    Reasoning with probabilistic information has recently attracted considerable attention in argumentation, and formalisms of Probabilistic Abstract Argumentation (PAA), Probabilistic Bipolar Argumentation (PBA) and Probabilistic Structured Argumentation (PSA) have been proposed. These foundational advances have been complemented with investigations on the complexity of some approaches to PAA and PBA, but not to PSA. We study the complexity of an existing form of PSA, namely Probabilistic Assumption-Based Argumentation (PABA), a powerful, implemented formalism which subsumes several forms of PAA and other forms of PSA. Specifically, we establish membership (general upper bounds) and completeness (instantiated lower bounds) of reasoning in PABA for the class FP#P (of functions with a #P-oracle for counting the solutions of an NP problem) with respect to newly introduced probabilistic verification, credulous and sceptical acceptance function problems under several ABA semantics. As a by-product necessary to establish PABA complexity results, we provide a comprehensive picture of the ABA complexity landscape (for both flat and generic, possibly non-flat ABA) for the classical decision problems of verification, existence, credulous and sceptical acceptance under those ABA semantics.

  • Journal article
    Qian Y, Expert P, Panzarasa P, Barahona Met al., 2021,

    Geometric graphs from data to aid classification tasks with Graph Convolutional Networks

    , Patterns, Vol: 2, Pages: 100237-100237, ISSN: 2666-3899
  • Conference paper
    Bonavita M, Arcucci R, Carrassi A, Dueben P, Geer AJ, Le Saux B, Longepe N, Mathieu P-P, Raynaud Let al., 2021,

    Machine Learning for Earth System Observation and Prediction

    , Publisher: AMER METEOROLOGICAL SOC, Pages: E710-E716, ISSN: 0003-0007
  • Journal article
    Maes A, Barahona M, Clopath C, 2021,

    Learning compositional sequences with multiple time scales through a hierarchical network of spiking neurons

    , PLoS Computational Biology, Vol: 17, ISSN: 1553-734X

    Sequential behaviour is often compositional and organised across multiple time scales: a set of individual elements developing on short time scales (motifs) are combined to form longer functional sequences (syntax). Such organisation leads to a natural hierarchy that can be used advantageously for learning, since the motifs and the syntax can be acquired independently. Despite mounting experimental evidence for hierarchical structures in neuroscience, models for temporal learning based on neuronal networks have mostly focused on serial methods. Here, we introduce a network model of spiking neurons with a hierarchical organisation aimed at sequence learning on multiple time scales. Using biophysically motivated neuron dynamics and local plasticity rules, the model can learn motifs and syntax independently. Furthermore, the model can relearn sequences efficiently and store multiple sequences. Compared to serial learning, the hierarchical model displays faster learning, more flexible relearning, increased capacity, and higher robustness to perturbations. The hierarchical model redistributes the variability: it achieves high motif fidelity at the cost of higher variability in the between-motif timings.

  • Journal article
    Espinosa-Gonzalez AB, Neves AL, Fiorentino F, Prociuk D, Husain L, Ramtale SC, Mi E, Mi E, Macartney J, Anand SN, Sherlock J, Saravanakumar K, Mayer E, de Lusignan S, Greenhalgh T, Delaney BCet al., 2021,

    Predicting Risk of Hospital Admission in Patients With Suspected COVID-19 in a Community Setting: Protocol for Development and Validation of a Multivariate Risk Prediction Tool (Preprint)

    <sec> <title>BACKGROUND</title> <p>During the pandemic, remote consultations have become the norm for assessing patients with signs and symptoms of COVID-19 to decrease the risk of transmission. This has intensified the clinical uncertainty already experienced by primary care clinicians when assessing patients with suspected COVID-19 and has prompted the use of risk prediction scores, such as the National Early Warning Score (NEWS2), to assess severity and guide treatment. However, the risk prediction tools available have not been validated in a community setting and are not designed to capture the idiosyncrasies of COVID-19 infection.</p> </sec> <sec> <title>OBJECTIVE</title> <p>The objective of this study is to produce a multivariate risk prediction tool, RECAP-V1 (Remote COVID-19 Assessment in Primary Care), to support primary care clinicians in the identification of those patients with COVID-19 that are at higher risk of deterioration and facilitate the early escalation of their treatment with the aim of improving patient outcomes.</p> </sec> <sec> <title>METHODS</title> <p>The study follows a prospective cohort observational design, whereby patients presenting in primary care with signs and symptoms suggestive of COVID-19 will be followed and their data linked to hospital outcomes (hospital admission and death). Data collection will be carried out by primary care clinicians in four arms: North West London Clinical Commissioning Groups (NWL CCGs), Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC), Covid Clinical Assessment Service (CCAS), and South East London CCGs (Doctaly platform). The study involves the use o

  • Journal article
    Cursi F, Modugno V, Lanari L, Oriolo G, Kormushev Pet al., 2021,

    Bayesian neural network modeling and hierarchical MPC for a tendon-driven surgical robot with uncertainty minimization

    , IEEE Robotics and Automation Letters, Vol: 6, Pages: 2642-2649, ISSN: 2377-3766

    In order to guarantee precision and safety in robotic surgery, accurate models of the robot and proper control strategies are needed. Bayesian Neural Networks (BNN) are capable of learning complex models and provide information about the uncertainties of the learned system. Model Predictive Control (MPC) is a reliable control strategy to ensure optimality and satisfaction of safety constraints. In this work we propose the use of BNN to build the highly nonlinear kinematic and dynamic models of a tendon-driven surgical robot, and exploit the information about the epistemic uncertainties by means of a Hierarchical MPC (Hi-MPC) control strategy. Simulation and real world experiments show that the method is capable of ensuring accurate tip positioning, while satisfying imposed safety bounds on the kinematics and dynamics of the robot.

  • Journal article
    Cheng S, Pain CC, Guo Y-K, Arcucci Ret al., 2021,

    Real-time Updating of Dynamic Social Networks for COVID-19 Vaccination Strategies

    <jats:title>Abstract</jats:title><jats:p>Vaccination strategy is crucial in fighting the COVID-19 pandemic. Since the supply is still limited in many countries, contact network-based interventions can be most powerful to set an efficient strategy by identifying high-risk individuals or communities. However, due to the high dimension, only partial and noisy network information can be available in practice, especially for dynamic systems where contact networks are highly time-variant. Furthermore, the numerous mutations of SARS-CoV-2 have a significant impact on the infectious probability, requiring real-time network updating algorithms. In this study, we propose a sequential network updating approach based on data assimilation techniques to combine different sources of temporal information. We then prioritise the individuals with high-degree or high-centrality, obtained from assimilated networks, for vaccination. The assimilation-based approach is compared with the standard method (based on partially observed networks) and a random selection strategy in terms of vaccination effectiveness in a SIR model. The numerical comparison is first carried out using real-world face-to-face dynamic networks collected in a high school, followed by sequential multi-layer networks generated relying on the Barabasi-Albert model emulating large-scale social networks with several communities.</jats:p>

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=989&limit=20&page=7&respub-action=search.html Current Millis: 1713518230357 Current Time: Fri Apr 19 10:17:10 BST 2024