Publications

You can also access our individual websites (via the Members page) for further information about our research and lists of our publications.

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Ming DKY, Myall A, Hernandez B, Weisse A, Peach R, Barahona M, Rawson T, Holmes Aet al., 2021,

    Informing antimicrobial management in the context of COVID-19: understanding the longitudinal dynamics of C-reactive protein and procalcitonin

    , BMC Infectious Diseases, Vol: 21, ISSN: 1471-2334

    Background:To characterise the longitudinal dynamics of C-reactive protein (CRP) and Procalcitonin (PCT) in a cohort of hospitalised patients with COVID-19 and support antimicrobial decision-making.Methods:Longitudinal CRP and PCT concentrations and trajectories of 237 hospitalised patients with COVID-19 were modelled. The dataset comprised of 2,021 data points for CRP and 284 points for PCT. Pairwise comparisons were performed between: (i) those with or without significant bacterial growth from cultures, and (ii) those who survived or died in hospital.Results:CRP concentrations were higher over time in COVID-19 patients with positive microbiology (day 9: 236 vs 123 mg/L, p < 0.0001) and in those who died (day 8: 226 vs 152 mg/L, p < 0.0001) but only after day 7 of COVID-related symptom onset. Failure for CRP to reduce in the first week of hospital admission was associated with significantly higher odds of death. PCT concentrations were higher in patients with COVID-19 and positive microbiology or in those who died, although these differences were not statistically significant.Conclusions:Both the absolute CRP concentration and the trajectory during the first week of hospital admission are important factors predicting microbiology culture positivity and outcome in patients hospitalised with COVID-19. Further work is needed to describe the role of PCT for co-infection. Understanding relationships of these biomarkers can support development of risk models and inform optimal antimicrobial strategies.

  • Journal article
    Mersmann S, Stromich L, Song F, Wu N, Vianello F, Barahona M, Yaliraki Set al., 2021,

    ProteinLens: a web-based application for the analysis of allosteric signalling on atomistic graphs of biomolecules

    , Nucleic Acids Research, Vol: 49, Pages: W551-W558, ISSN: 0305-1048

    The investigation of allosteric effects in biomolecular structures is of great current interest in diverse areas, from fundamental biological enquiry to drug discovery. Here we present ProteinLens, a user-friendly and interactive web application for the investigation of allosteric signalling based on atomistic graph-theoretical methods. Starting from the PDB file of a biomolecule (or a biomolecular complex) ProteinLens obtains an atomistic, energy-weighted graph description of the structure of the biomolecule, and subsequently provides a systematic analysis of allosteric signalling and communication across the structure using two computationally efficient methods: Markov Transients and bond-to-bond propensities. ProteinLens scores and ranks every bond and residue according to the speed and magnitude of the propagation of fluctuations emanating from any site of choice (e.g. the active site). The results are presented through statistical quantile scores visualised with interactive plots and adjustable 3D structure viewers, which can also be downloaded. ProteinLens thus allows the investigation of signalling in biomolecular structures of interest to aid the detection of allosteric sites and pathways. ProteinLens is implemented in Python/SQL and freely available to use at: www.proteinlens.io.

  • Journal article
    Chrysostomou S, Roy R, Prischi F, Thamlikitkul L, Chapman KL, Mufti U, Peach R, Ding L, Hancock D, Moore C, Molina-Arcas M, Mauri F, Pinato DJ, Abrahams JM, Ottaviani S, Castellano L, Giamas G, Pascoe J, Moonamale D, Pirrie S, Gaunt C, Billingham L, Steven NM, Cullen M, Hrouda D, Winkler M, Post J, Cohen P, Salpeter SJ, Bar V, Zundelevich A, Golan S, Leibovici D, Lara R, Klug DR, Yaliraki SN, Barahona M, Wang Y, Downward J, Skehel JM, Ali MMU, Seckl MJ, Pardo OEet al., 2021,

    Repurposed floxacins targeting RSK4 prevent chemoresistance and metastasis in lung and bladder cancer.

    , Science translational medicine, Vol: 13, ISSN: 1946-6234

    Lung and bladder cancers are mostly incurable because of the early development of drug resistance and metastatic dissemination. Hence, improved therapies that tackle these two processes are urgently needed to improve clinical outcome. We have identified RSK4 as a promoter of drug resistance and metastasis in lung and bladder cancer cells. Silencing this kinase, through either RNA interference or CRISPR, sensitized tumor cells to chemotherapy and hindered metastasis in vitro and in vivo in a tail vein injection model. Drug screening revealed several floxacin antibiotics as potent RSK4 activation inhibitors, and trovafloxacin reproduced all effects of RSK4 silencing in vitro and in/ex vivo using lung cancer xenograft and genetically engineered mouse models and bladder tumor explants. Through x-ray structure determination and Markov transient and Deuterium exchange analyses, we identified the allosteric binding site and revealed how this compound blocks RSK4 kinase activation through binding to an allosteric site and mimicking a kinase autoinhibitory mechanism involving the RSK4's hydrophobic motif. Last, we show that patients undergoing chemotherapy and adhering to prophylactic levofloxacin in the large placebo-controlled randomized phase 3 SIGNIFICANT trial had significantly increased (<i>P</i> = 0.048) long-term overall survival times. Hence, we suggest that RSK4 inhibition may represent an effective therapeutic strategy for treating lung and bladder cancer.

  • Conference paper
    Laumann F, Kügelgen JV, Barahona M, 2021,

    Kernel two-sample and independence tests for non-stationary random processes

    , ITISE 2021 (7th International conference on Time Series and Forecasting), Publisher: https://www.mdpi.com/2673-4591/5/1/31, Pages: 1-13

    Two-sample and independence tests with the kernel-based MMD and HSIC haveshown remarkable results on i.i.d. data and stationary random processes.However, these statistics are not directly applicable to non-stationary randomprocesses, a prevalent form of data in many scientific disciplines. In thiswork, we extend the application of MMD and HSIC to non-stationary settings byassuming access to independent realisations of the underlying random process.These realisations - in the form of non-stationary time-series measured on thesame temporal grid - can then be viewed as i.i.d. samples from a multivariateprobability distribution, to which MMD and HSIC can be applied. We further showhow to choose suitable kernels over these high-dimensional spaces by maximisingthe estimated test power with respect to the kernel hyper-parameters. Inexperiments on synthetic data, we demonstrate superior performance of ourproposed approaches in terms of test power when compared to currentstate-of-the-art functional or multivariate two-sample and independence tests.Finally, we employ our methods on a real socio-economic dataset as an exampleapplication.

  • Journal article
    Godoy-Lorite A, Jones N, 2021,

    Inference and influence of network structure using snapshot social behavior without network data

    , Science Advances, Vol: 7, ISSN: 2375-2548

    Population behavior, like voting and vaccination, depends on the structure of social networks. This structure can differ depending on behavior type and is typically hidden. However, we do often have behavioral data, albeit only snapshots taken at one time point. We present a method jointly inferring a model for both network structure and human behavior using only snapshot population-level behavioral data. This exploits the simplicity of a few parameter model, geometric sociodemographic network model, and a spin-based model of behavior. We illustrate, for the European Union referendum and two London mayoral elections, how the model offers both prediction and the interpretation of the homophilic inclinations of the population. Beyond extracting behavior-specific network structure from behavioral datasets, our approach yields a framework linking inequalities and social preferences to behavioral outcomes. We illustrate potential network-sensitive policies: How changes to income inequality, social temperature, and homophilic preferences might have reduced polarization in a recent election.

  • Journal article
    Thomas P, Shahrezaei V, 2021,

    Coordination of gene expression noise with cell size: analytical results for agent-based models of growing cell populations

    , Journal of the Royal Society Interface, Vol: 18, Pages: 1-16, ISSN: 1742-5662

    The chemical master equation and the Gillespie algorithm are widely used to model the reaction kinetics inside living cells. It is thereby assumed that cell growth and division can be modelled through effective dilution reactions and extrinsic noise sources. We here re-examine these paradigms through developing an analytical agent-based framework of growing and dividing cells accompanied by an exact simulation algorithm, which allows us to quantify the dynamics of virtually any intracellular reaction network affected by stochastic cell size control and division noise. We find that the solution of the chemical master equation—including static extrinsic noise—exactly agrees with the agent-based formulation when the network under study exhibits stochastic concentration homeostasis, a novel condition that generalizes concentration homeostasis in deterministic systems to higher order moments and distributions. We illustrate stochastic concentration homeostasis for a range of common gene expression networks. When this condition is not met, we demonstrate by extending the linear noise approximation to agent-based models that the dependence of gene expression noise on cell size can qualitatively deviate from the chemical master equation. Surprisingly, the total noise of the agent-based approach can still be well approximated by extrinsic noise models.

  • Journal article
    Myall AC, Peach RL, Weiße AY, Davies F, Mookerjee S, Holmes A, Barahona Met al., 2021,

    Network memory in the movement of hospital patients carrying drug-resistant bacteria

    , Applied Network Science, Vol: 6, ISSN: 2364-8228

    Hospitals constitute highly interconnected systems that bring into contact anabundance of infectious pathogens and susceptible individuals, thus makinginfection outbreaks both common and challenging. In recent years, there hasbeen a sharp incidence of antimicrobial-resistance amongsthealthcare-associated infections, a situation now considered endemic in manycountries. Here we present network-based analyses of a data set capturing themovement of patients harbouring drug-resistant bacteria across three largeLondon hospitals. We show that there are substantial memory effects in themovement of hospital patients colonised with drug-resistant bacteria. Suchmemory effects break first-order Markovian transitive assumptions andsubstantially alter the conclusions from the analysis, specifically on noderankings and the evolution of diffusive processes. We capture variable lengthmemory effects by constructing a lumped-state memory network, which we then useto identify overlapping communities of wards. We find that these communities ofwards display a quasi-hierarchical structure at different levels of granularitywhich is consistent with different aspects of patient flows related to hospitallocations and medical specialties.

  • Journal article
    Saavedra-Garcia P, Roman-Trufero M, Al-Sadah HA, Blighe K, Lopez-Jimenez E, Christoforou M, Penfold L, Capece D, Xiong X, Miao Y, Parzych K, Caputo V, Siskos AP, Encheva V, Liu Z, Thiel D, Kaiser MF, Piazza P, Chaidos A, Karadimitris A, Franzoso G, Snijder AP, Keun HC, Oyarzún DA, Barahona M, Auner Het al., 2021,

    Systems level profiling of chemotherapy-induced stress resolution in cancer cells reveals druggable trade-offs

    , Proceedings of the National Academy of Sciences of USA, Vol: 118, ISSN: 0027-8424

    Cancer cells can survive chemotherapy-induced stress, but how they recover from it is not known.Using a temporal multiomics approach, we delineate the global mechanisms of proteotoxic stressresolution in multiple myeloma cells recovering from proteasome inhibition. Our observations definelayered and protracted programmes for stress resolution that encompass extensive changes acrossthe transcriptome, proteome, and metabolome. Cellular recovery from proteasome inhibitioninvolved protracted and dynamic changes of glucose and lipid metabolism and suppression ofmitochondrial function. We demonstrate that recovering cells are more vulnerable to specific insultsthan acutely stressed cells and identify the general control nonderepressable 2 (GCN2)-driven cellularresponse to amino acid scarcity as a key recovery-associated vulnerability. Using a transcriptomeanalysis pipeline, we further show that GCN2 is also a stress-independent bona fide target intranscriptional signature-defined subsets of solid cancers that share molecular characteristics. Thus,identifying cellular trade-offs tied to the resolution of chemotherapy-induced stress in tumour cellsmay reveal new therapeutic targets and routes for cancer therapy optimisation.

  • Journal article
    Qian Y, Expert P, Panzarasa P, Barahona Met al., 2021,

    Geometric graphs from data to aid classification tasks with Graph Convolutional Networks

    , Patterns, Vol: 2, ISSN: 2666-3899

    Traditional classification tasks learn to assign samples to given classes based solely on sample features. This paradigm is evolving to include other sources of information, such as known relations between samples. Here, we show that, even if additional relational information is not available in the dataset, one can improve classification by constructing geometric graphs from the features themselves, and using them within a Graph Convolutional Network. The improvement in classification accuracy is maximized by graphs that capture sample similarity with relatively low edge density. We show that such feature-derived graphs increase the alignment of the data to the ground truth while improving class separation. We also demonstrate that the graphs can be made more efficient using spectral sparsification, which reduces the number of edges while still improving classification performance. We illustrate our findings using synthetic and real-world datasets from various scientific domains.

  • Journal article
    Peach RL, Arnaudon A, Schmidt JA, Palasciano HA, Bernier NR, Jelfs KE, Yaliraki SN, Barahona Met al., 2021,

    HCGA: Highly comparative graph analysis for network phenotyping

    , Patterns, Vol: 2, Pages: 100227-100227, ISSN: 2666-3899

    <jats:title>A<jats:sc>bstract</jats:sc></jats:title><jats:p>Networks are widely used as mathematical models of complex systems across many scientific disciplines, not only in biology and medicine but also in the social sciences, physics, computing and engineering. Decades of work have produced a vast corpus of research characterising the topological, combinatorial, statistical and spectral properties of graphs. Each graph property can be thought of as a feature that captures important (and some times overlapping) characteristics of a network. In the analysis of real-world graphs, it is crucial to integrate systematically a large number of diverse graph features in order to characterise and classify networks, as well as to aid network-based scientific discovery. In this paper, we introduce HCGA, a framework for highly comparative analysis of graph data sets that computes several thousands of graph features from any given network. HCGA also offers a suite of statistical learning and data analysis tools for automated identification and selection of important and interpretable features underpinning the characterisation of graph data sets. We show that HCGA outperforms other methodologies on supervised classification tasks on benchmark data sets whilst retaining the interpretability of network features. We also illustrate how HCGA can be used for network-based discovery through two examples where data is naturally represented as graphs: the clustering of a data set of images of neuronal morphologies, and a regression problem to predict charge transfer in organic semiconductors based on their structure. HCGA is an open platform that can be expanded to include further graph properties and statistical learning tools to allow researchers to leverage the wide breadth of graph-theoretical research to quantitatively analyse and draw insights from network data.</jats:p>

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=219&limit=10&page=1&respub-action=search.html Current Millis: 1632718048443 Current Time: Mon Sep 27 05:47:28 BST 2021