Mike Tarbutt

Ben Sauer

It has been proposed [1] that a microfabricated chip trap could be used to constrain the movement of cold molecules in proximity to a microwave resonator, allowing direct manipulation of the molecule's rotational energy structure. Recent work into cooling molecules below the Doppler limit [2] suggests that such a "molecule chip" is now realisable. Such a chip would be similar to existing atomic counterparts [3, 4], forming a robust environment for investigation of quantum e ffects. Applications are proposed in a variety of quantum settings, including quantum information [5] and atomic clocks [6]. Chips are also candidates for building hybrid systems [7].

[1] A. Andre, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller. A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nature Physics, 2:636-642, August 2006.
[2] S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt. Molecules cooled below the doppler limit. Nature Physics, 13:1173-, August 2017.
[3] Jozsef Fortagh and Claus Zimmermann. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys., 79:235-289, Feb 2007.
[4] Jakob Reichel and Vladan Vuletic. Atom chips. Wiley-VCH, 2011.
[5] Ron Folman, Peter Kruger, Donatella Cassettari, Bjorn Hessmo, Thomas Maier, and Jorg Schmiedmayer. Controlling cold atoms using nanofabricated surfaces: Atom chips. Phys. Rev. Lett., 84:4749-4752, May 2000.
[6] F. Ramrez-Martnez, C. Lacrote, P. Rosenbusch, F. Reinhard, C. Deutsch, T. Schneider, and J. Reichel. Compact frequency standard using atoms trapped on a chip. Advances in Space Research, 47(2):247-252, 2011.
[7] T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche. Realization of a superconducting atom chip. Phys. Rev. Lett., 97:200405, Nov 2006.