Module Leader

Dr Billy Wu

+44 (0)20 7594 6385

Learning Outcomes

  • Identify common engineering materials and find data for their properties
  • Understand how materials contribute to user experience
  • Select appropriate materials for an application based on their properties
  • Define the capabilities of a range of common production techniques
  • Select appropriate production techniques for use with different materials and applications
  • Select appropriate methods of assembly and joining for a particular design application


Description of Content

Concepts and fundamentals to develop understanding types of materials: metals, polymers, ceramics and composites. The course commences with consideration of the simple properties used by engineers to quantify materials behaviour, such as hardness, strength, toughness etc. The course then considers metals, polymers, ceramics and composites in turn, and relates the basic structure of each material type to its observed behaviour.

The four classes of engineering material:
  • Metals. Ferrous alloys. Carbon steels: Fe-C phase diagram, eutectoid, hypo- and hyper-eutectoid steels, cast iron, heat treatment of steels, annealing, normalising, quenching, tempering, the TTT diagram for eutectoid steel, uses of steel.
  • Ceramics. Mechanical properties, applications, processing.
  • Polymers. Classes of polymer, molecular structure, macroscopic structure, glass transition temperature, mechanical properties, applications, processing.
  • Composites. Classification, polymer matrix composites, metal matrix composites, ceramic matrix composites; Performance of polymer matrix composites: critical fibre length, fibre volume fraction, composite stiffness parallel and transverse to fibres, stress-strain response, structural laminates.

The course covers mechanical behaviour and practical considerations in the engineering design process: stress-strain behaviour, engineering stress and strain, elastic limit, Young's modulus, Poisson's ratio, elastic-plastic behaviour, strength, true stress and strain, compressive behaviour, hardness toughness (fracture behaviour, brittle-ductile transition), creep deformation and fatigue strength (S-N approach, fatigue limit, strength and life), non-destructive testing. An introduction to the Cambridge Engineering Selector (CES) package for material properties and basic materials selection. The course also considers the influence of materials experience when selecting materials. The MATERALISE coursework will apply these concepts.

Following on from the materials half of the module, the production half presents an overview of how to process the 4 main categories of materials via solidification based methods and metal working, then looks at surface treatment, joining and assembly considerations of components.

Solidification based material processing techniques include:
  • Casting
  • Polymer processing
  • Polymer composite processing
  • Ceramic processing
  • Additive manufacturing
For metal working this includes covering:
  • Metal forming
  • Machining operations
  • Non-traditional machining operations
For the surface treatment, joining and assembly sections, this will include:
  • Surface treatment processing
  • Welding, brazing and soldering
  • Adhesives
  • Mechanical fasteners
  • Design for assembly
A coursework element focusing on Reverse Engineering (REVENG) will apply this development knowledge of materials and manufacturing.