BibTex format

author = {Quintanilla, P and Neethling, SJ and Navia, D and Brito-Parada, PR},
doi = {10.1016/j.mineng.2021.107192},
journal = {Minerals Engineering},
pages = {1--23},
title = {A dynamic flotation model for predictive control incorporating froth physics. Part I: Model development},
url = {},
volume = {173},
year = {2021}

RIS format (EndNote, RefMan)

AB - It is widely accepted that the implementation of model-based predictive controllers (MPC) ensures optimal operation if an accurate model of the process is available. In the case of froth flotation, modelling for control purposes is a challenging task due to inherent process instabilities. Most models for control have only focused on the pulp phase rather than the froth phase, which is usually oversimplified or even neglected. Despite the fact that froth stability can significantly affect the overall performance of flotation cells, there is still a gap in literature regarding flotation models for control purposes that properly include froth physics.In this paper we describe the development of a dynamic flotation model suitable for model predictive control, incorporating equations that describe the physics of flotation froths. Unlike other flotation models for control in the literature, the model proposed here includes important variables related to froth stability, such as bursting rate and air recovery, as well as simplified equations to calculate froth recovery and entrainment. These model equations allow estimating the amount of valuable material reporting to the concentrate, which can be used as a proxy to estimate grade and recovery. Additionally, pulp-froth interface physics was also included in our model, which enables a more accurate prediction of relevant flotation variables.A sensitivity analysis of the parameters showed that two out of seven parameters were highly sensitive. The highly sensitive parameters are the exponential factor n of the equation for the overflowing bubble size, and the constant value a of the equation for the bursting rate. Although the other parameters showed a reasonably lower sensitivity than n and a, the results also revealed that there is a significant difference in the prediction accuracy if the parameters are poorly estimated. Further simulations of important variables for control exhibited a good adaptability to changes in typ
AU - Quintanilla,P
AU - Neethling,SJ
AU - Navia,D
AU - Brito-Parada,PR
DO - 10.1016/j.mineng.2021.107192
EP - 23
PY - 2021///
SN - 0892-6875
SP - 1
TI - A dynamic flotation model for predictive control incorporating froth physics. Part I: Model development
T2 - Minerals Engineering
UR -
UR -
UR -
VL - 173
ER -