Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Chang L, Hong H, Bai F, Wang S, Pei Z, Paterson GA, Heslop D, Roberts AP, Huang B, Tauxe L, Muxworthy Aet al., 2020,

    Detrital remanent magnetization of single-crystal silicates with magnetic inclusions: constraints from deposition experiments

    , Geophysical Journal International, ISSN: 0956-540X
  • Journal article
    Zhang Y, Muxworthy A, Jia D, Zhang Y, Chen Z, Wang M, Zhigang Let al., 2020,

    Fluid migration and widespread remagnetization in the Dabashan fold and thrust belt, China

    , Journal of Geophysical Research. Solid Earth, Vol: 125, ISSN: 2169-9356

    To better understand the fluid migration in orogenic zones and associated chemical remagnetization, we have conducted a detailed magnetic, petrographic, and strontium isotope study in an important orogenic belt of China, the Jurassic Dabashan fold and thrust belt. This belt formed by the continued collision of the North and South China blocks after the Late Triassic closure of the Paleo‐Tethys Ocean. Samples were collected in a variety of rock units of Ediacaran to Permian age, in both the thrust and the fold belts. Paleomagnetic analysis indicates that all the samples were remagnetized and carry a Middle‐Late Jurassic paleo‐direction. Rock magnetic data and scanning electron microscopy observations found that the proposed remagnetization is carried by framboidal magnetite, which likely formed by the replacement of pyrite. The pervasive nature of the chemical remagnetization in these units and belts and its temporal and spatial association with the orogeny suggest that it resulted from the alteration of orogeny‐induced fluids. Sr‐isotopic analysis of the units that are thought to be remagnetized suggests that the sediments in the thrust belt were altered by externally derived evolved fluids, whereas the Permian samples in the fold belt were altered by internal pore fluid mixing during the orogeny. Together with the lithological and structural features, we conclude that the external orogenic fluids migrated preferentially along thrust faults and unconformities but were blocked by layers of low‐permeability gypsum. Our results help to constrain the origin of widespread remagnetization in South China.

  • Journal article
    Heslop D, Roberts AP, Oda H, Zhao X, Harrison RJ, Muxworthy AR, Hu P, Sato Tet al., 2020,

    An automatic model selection‐based machine learning framework to estimate FORC distributions

    , Journal of Geophysical Research: Solid Earth, Vol: 125, Pages: 1-16, ISSN: 2169-9313

    First‐order reversal curve (FORC) distributions are a powerful diagnostic tool for characterizing and quantifying magnetization processes in fine magnetic particle systems. Estimation of FORC distributions requires the computation of the second‐order mixed derivative of noisy magnetic hysteresis data. This operation amplifies measurement noise, and for weakly magnetic systems, it can compromise estimation of a FORC distribution. Previous processing schemes, which are based typically on local polynomial regression, have been developed to smooth FORC data to suppress detrimental noise. Importantly, the smoothed FORC distribution needs to be consistent with the measurement data from which it was estimated. This can be a challenging task even for expert users, who must adjust subjectively parameters that define the form and extent of smoothing until a “satisfactory” FORC distribution is obtained. For nonexpert users, estimation of FORC distributions using inappropriate smoothing parameters can produce distorted results corrupted by processing artifacts, which can lead to spurious inferences concerning the magnetic system under investigation. We have developed a statistical machine learning framework based on a probabilistic model comparison to guide the estimation of FORC distributions. An intuitive approach is presented that reveals regions of a FORC distribution that may have been smoothed inappropriately. An associated metric can also be used to compare data preparation and local regression schemes to assess their suitability for processing a given FORC data set. Ultimately, our approach selects FORC smoothing parameters in a probabilistic fashion, which automates the derivative estimation process regardless of user expertise.

  • Journal article
    Døssing A, Riishuus MS, MacNiocaill C, Muxworthy AR, Maclennan Jet al., 2020,

    Late Miocene to late Pleistocene geomagnetic secular variation at high northern latitudes

    , Geophysical Journal International, Vol: 222, Pages: 86-102, ISSN: 0956-540X

    We report a palaeomagnetic study of Icelandic lavas of late Miocene to late Pliocene age to test the geocentric axial dipole hypothesis at high northern latitudes. Cores were sampled from 125 sites in the Fljótsdalur valley in eastern Iceland, and hand samples were taken for 17 new incremental heating 40Ar/39Ar age determinations. 96 per cent of the cores were oriented using both a Brunton compass and a sun compass. Comparison of the magnetic and sun azimuths reveals deviations of ±5°, ±10° and ±20°, respectively, for 42, 16 and 3 per cent of the data points, indicating that core sampling intended for palaeosecular variation (PSV) studies at high northern latitudes should be oriented by sun. A total of 1279 independent specimens were subjected to AF- and thermal-demagnetization for palaeodirectional analysis, and well-grouped site mean directions were obtained for 123 sites of which 113 were found to be independent sites. Applying a selection criteria of k > 50 and N ≥ 5 (Nmean = 9.5), we obtain a combined grand mean direction for 46 normal and 53 reverse (for VGPlat > ±45°) polarity sites of declination = 5.6° and inclination = 77.5° that is not significantly different from that expected from a GAD field. The corresponding palaeomagnetic pole position (VGPlat = 86.3°N, VGPlon = 21.2°E, dp/dm = 4.0°/4.3°) is coincident with the North Pole within the 95 per cent confidence limits. An updated age model is constructed based on the 40Ar/39Ar ages, showing that the majority of the Fljótsdalur lavas fall within 2–7 Ma. We combine the Fljótsdalur data with existing data from the nearby Jökuldalur valley. The 154 palaeodirections are well-dispersed between 1 and 7 Ma and constitute a high-quality data set for PSV analysis. Our results partly support previous conclusions of a generally higher dispersion during reverse polarity intervals. However

  • Journal article
    Valdez Grijalva M, Nagy L, Muxworthy A, Williams W, Roberts AP, Heslop Det al., 2020,

    Micromagnetic simulations of first-order reversal curve (FORC) diagrams of framboidal greigite

    , Geophysical Journal International, Vol: 222, Pages: 1126-1134, ISSN: 0956-540X

    Greigite is a sensitive environmental indicator and occurs commonly in nature as magnetostatically interacting framboids. Until now only the magnetic response of isolated non-interacting greigite particles have been modelled micromagnetically. We present here hysteresis and first-order reversal curve (FORC) simulations for framboidal greigite (Fe3S4), and compare results to those for isolated particles of a similar size. We demonstrate that these magnetostatic interactions alter significantly the framboid FORC response compared to isolated particles, which makes the magnetic response similar to that of much larger (multidomain) grains. We also demonstrate that framboidal signals plot in different regions of a FORC diagram, which facilitates differentiation between framboidal and isolated grain signals. Given that large greigite crystals are rarely observed in microscopy studies of natural samples, we suggest that identification of multidomain-like FORC signals in samples known to contain abundant greigite could be interpreted as evidence for framboidal greigite.

  • Journal article
    Abubakar R, Muxworthy A, Fraser A, Sephton MA, Watson JS, Heslop D, Paterson G, Southern Pet al., 2020,

    Mapping hydrocarbon charge-points in the Wessex Basin using seismic, geochemistry and mineral magnetics

    , Marine and Petroleum Geology, Vol: 111, Pages: 510-528, ISSN: 1873-4073

    This study reports a multidisciplinary approach to determining hydrocarbon charge-points and migration in the Wessex Basin, southern England. Geochemical analysis of reservoir core material (Bridport Sandstone and Inferior Oolite) using gas chromatography-mass spectrometry (GC-MS), suggests that the oil in the Wessex Basin is from a single source, and that small variations in environmentally sensitive biomarkers are likely due to small differences in maturity or depositional conditions during the formation of the oil over millions of years. Using seismic data, basin modelling revealed two potential hydrocarbon migration pathways from the hanging wall of the Purbeck fault into the Sherwood Sandstone reservoir at Wytch Farm. One of these potential pathways is represented by cores termed Creech and the other Bushey Farm. To try to distinguish between the two potential pathways, cores were studied using mineral magnetic techniques. The magnetic signature was characterised using low-temperature (<50 K) magnetic measurements; this is because much of the magnetic signature was dominated by nanoparticles < 30 nm, which are thermally activated at room temperature and magnetically “transparent”. Wells that contained considerable amounts of hydrocarbons were dominated by nanometric magnetite (<30 nm). Such particles are small enough to migrate with the oil, through pore spaces, which are of the order ~100 nm. Wells located at the fringes of large hydrocarbon accumulation had enhanced pyrrhotite-dominated magnetic signals. Of the two potential migration pathways, the mineral magnetic results suggest that the oil migrated through Creech rather than through Bushey Farm.

  • Journal article
    Harrison RJ, Zhao X, Hu P, Sato T, Heslop D, Muxworthy A, Oda H, Kuppili VSC, Roberts APet al., 2019,

    Simulation of remanent, transient, and induced first-order reversal curve (FORC) diagrams for interacting particles with uniaxial, cubic, and hexagonal anisotropy

    , G3: Geochemistry, Geophysics, Geosystems: an electronic journal of the earth sciences, ISSN: 1525-2027
  • Journal article
    Maidment S, Muxworthy A, 2019,

    A chronostratigraphic framework for the Upper Jurassic Morrison Formation, western USA

    , Journal of Sedimentary Research, Vol: 89, Pages: 1017-1038, ISSN: 1527-1404

    The fluvial, overbank, and lacustrine deposits of the Upper Jurassic Morrison Formation of the Western Interior, U.S.A. have been intensively studied due to their diverse and well-preserved dinosaurian fauna, and the presence of economic quantities of uranium and vanadium ores. The formation crops out over 12 degrees of latitude and 1.2 million km2, and is an excellent case study for the examination of paleoecology, community structure, and evolutionary dynamics at a time in Earth’s history when the climate was significantly warmer than today. However, paleoecological studies have been hampered by lack of correlation across the formation. Assuming a primarily tectonic control on fluvial architecture, we propose the first chronostratigraphic framework of the formation, which is based on sequence stratigraphy, magnetostratigraphy, and radiometric dating. The formation can be divided into three sequences each represented by a period of degradation followed by aggradation. This chronostratigraphic framework indicates that the formation youngs to the north, and was deposited over about 7 million years during the late Kimmeridgian and Tithonian. This framework provides a foundation for future sedimentological, stratigraphic, and paleobiological studies of the iconic dinosaurian fauna known from the Morrison.

  • Journal article
    Zhang Y, Muxworthy AR, Jia D, Wei G, Xia B, Wen B, Wang M, Liu W, Brzozowski MJet al., 2019,

    Identifying and dating the destruction of hydrocarbon reservoirs using secondary chemical remanent magnetization

    , Geophysical Research Letters, Vol: 46, Pages: 11100-11108, ISSN: 0094-8276

    Destructive processes are thought to be common in pre‐Cenozoic oil‐gas reservoirs. The timing, mechanism, and even identification of these processes, however, are difficult to clearly characterize, which obscures the evolution of such systems and the assessment of oil and gas reserves. Here, we reveal a new link between secondary chemical remanent magnetization acquisition and tectonically driven destruction of hydrocarbon reservoirs, which can be used to date the destructive processes and identify their tectonic controls. We performed a detailed paleomagnetic analysis of rocks from a typical destroyed reservoir (Majiang reservoir, China) and combined these data with scanning electronic microscope imaging and strontium isotope, total organic carbon, and clay analysis. We found that the Late Triassic syntilting secondary chemical remanent magnetizations of source and reservoir rocks resulted from the destructive processes driven by the Indosinian orogeny. We therefore argue that palaeomagnetic methods can be used to constrain destructive events within hydrocarbon reservoirs worldwide.

  • Journal article
    Roberts AP, Hu P, Harrison RJ, Heslop D, Muxworthy AR, Oda H, Sato T, Tauxe L, Zhao Xet al., 2019,

    Domain state diagnosis in rock magnetism: evaluation of potential alternatives to the Day diagram

    , Journal of Geophysical Research: Solid Earth, Vol: 124, Pages: 5286-5314, ISSN: 2169-9313

    The Day diagram is used extensively in rock magnetism for domain state diagnosis. It has been shown recently to be fundamentally ambiguous for 10 sets of reasons. This ambiguity highlights the urgency for adopting suitable alternative approaches to identify the domain state of magnetic mineral components in rock magnetic studies. We evaluate 10 potential alternative approaches here and conclude that four have value for identifying data trends, but, like the Day diagram, they are affected by use of bulk parameters that compromise domain state diagnosis in complex samples. Three approaches based on remanence curve and hysteresis loop unmixing, when supervised by independent data to avoid nonuniqueness of solutions, provide valuable component‐specific information that can be linked by inference to domain state. Three further approaches based on first‐order reversal curve diagrams provide direct domain state diagnosis with varying effectiveness. Environmentally important high‐coercivity hematite and goethite are represented with variable effectiveness in the evaluated candidate approaches. These minerals occur predominantly in noninteracting single‐domain particle assemblages in paleomagnetic contexts, so domain state diagnosis is more critical for ferrimagnetic minerals. Treating the high‐coercivity component separately following normal rock magnetic procedures allows focus on the more vexing problem of diagnosing domain state in ferrimagnetic mineral assemblages. We suggest a move away from nondiagnostic methods based on bulk parameters and adoption of approaches that provide unambiguous component‐specific domain state identification, among which various first‐order reversal curve‐based approaches provide diagnostic information.

  • Journal article
    Nagy L, Williams W, Tauxe L, Muxworthy ARet al., 2019,

    From nano to micro: evolution of magnetic domain structures in multi‐domain magnetite

    , Geochemistry, Geophysics, Geosystems, Vol: 20, Pages: 2907-2918, ISSN: 1525-2027

    Reliability of magnetic recordings of the ancient magnetic field is strongly dependent on the magnetic mineralogy of natural samples. Theoretical estimates of long‐term stability of remanence were restricted to single‐domain (SD) states, but micromagnetic models have recently demonstrated that the so‐called single‐vortex (SV) domain structure can have even higher stability that SD grains. In larger grains ( urn:x-wiley:ggge:media:ggge21913:ggge21913-math-000110 μm in magnetite) the multidomain (MD) state dominates, so that large uniform magnetic domains are separated by narrow domain walls. In this paper we use a parallelized micromagnetic finite element model to provide resolutions of many millions of elements allowing us, for the first time, to examine the evolution of magnetic structure from a uniform state, through the SV state up to the development of the domain walls indicative of MD states. For a cuboctahedral grain of magnetite, we identify clear domain walls in grains as small as ∼3 μm with domain wall widths equal to that expected in large MD grains; we therefore put the SV to MD transition at ∼3 μm for magnetite and expect well‐defined, and stable, SV structures to be present until at least ∼1 μm when reducing the grain size. Reducing the size further shows critical dependence on the history of domain structures, particularly with SV states that transition through a so‐called “unstable zone” leading to the recently observed hard‐aligned SV states that proceed to unwind to SD yet remain hard aligned.

  • Journal article
    Penny C, Muxworthy A, Fabian K, 2019,

    Mean-field modelling of magnetic nanoparticles: The effect of particle size and shape on the Curie temperature

    , Physical review B: Condensed matter and materials physics, Vol: 99, ISSN: 1098-0121

    A Heisenberg mean-field model is used to study the effect of size and shape on the Curie temperature of magnetic nanoparticles. Simple cubic, body-centered cubic, and magnetite nanoparticles are modelled as spheres, cubes, and needlelike particles. The Curie temperatures of particles of different shape, but with the same crystal structure and smallest dimension d, are found to differ. The range in the value of the Curie temperature between particles of different shape, ΔTC, is found to be ∼20% of the bulk value of TC in particles where d<10 atoms. As particle size increases, the value of ΔTC reduces rapidly and becomes negligible above a threshold size. This threshold size differs between systems and is controlled predominantly by crystal structure. All systems were fit to the finite-size scaling equation, with values of the scaling exponent ν found to lie between 0.46 and 0.55, in good agreement with the expected value of ν=0.5. No trend in the value of ν due to shape was found.

  • Journal article
    Ku J, Valdez-Grijalva M, Deng R, Zuo W, Chen Q, Lin H, Muxworthy Aet al., 2019,

    Modelling external magnetic fields of magnetite particles: From micro- to macro-scale

    , Geosciences, Vol: 9, ISSN: 2076-3263

    We determine the role of particle shape in the type of magnetic extraction processes used in mining. We use a micromagnetic finite element method (FEM) to analyze the effect of external magnetic fields on the magnetic structures of sub-micron magnetite particles. In non-saturating fields, the magnetite particles contain multiple possible non-uniform magnetization states. The non-uniformity was found to gradually disappear with increasing applied field strength; at 100 mT the domain structure became near uniform; at 300 mT the magnetic structure saturates and the magnetization direction aligned with the field. In magnetic separation techniques, we suggest that 100 mT is the optimal field for magnetite to maximize the magnetic field with the lowest energy transfer; larger particles, i.e., &gt;1 µm, will likely saturate in smaller fields than this. We also examined the effect of external magnetic fields on a much larger irregular particle (L × W × H = 179.5 × 113 × 103 μm) that was too large to be examined using micromagnetics. To do this we used COMSOL. The results show the relative difference between the magnitude of magnetic flux density of the particle and that of a corresponding sphere of the same volume is &lt;5% when the distance to the particle geometry center is more than five times the sphere radius. The ideas developed in this paper have the potential to improve magnetic mineral extraction yield.

  • Journal article
    Valdez-Grijalva MA, Muxworthy AR, 2019,

    First-order reversal curve (FORC) diagrams of nanomagnets with cubic magnetocrystalline anisotropy: a numerical approach

    , Journal of Magnetism and Magnetic Materials, Vol: 471, Pages: 359-364, ISSN: 0304-8853

    First-order reversal curve (FORC) diagrams are increasingly used as a material’s magnetic domain state fingerprint. FORC diagrams of noninteracting dispersions of single-domain (SD) particles with uniaxial magnetocrystalline anisotropy (MCA) are well studied. However, a large class of materials possess a cubic MCA, for which the FORC diagram properties of noninteracting SD particle dispersions are less understood. A coherent rotation model was implemented to study the FORC diagram properties of noninteracting ensembles of SD particles with positive and negative MCA constants. The pattern formation mechanism is identified and related to the irreversible events the individual particles undergo. Our results support the utility of FORC diagrams for the identification of noninteracting to weakly-interacting SD particles with cubic MCA.

  • Journal article
    Nagy L, Williiams W, Tauxe L, Muxworthy A, Ferreira Iet al., 2018,

    Thermomagnetic recording fidelity of nanometer sized iron: implications for planetary magnetism

    , Proceedings of the National Academy of Sciences, ISSN: 0027-8424

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=697&limit=15&page=3&respub-action=search.html Current Millis: 1718956577847 Current Time: Fri Jun 21 08:56:17 BST 2024