Citation

BibTex format

@article{Nash:2021:10.1016/j.crpvbd.2021.100047,
author = {Nash, RK and Lambert, B and NGuessan, R and Ngufor, C and Rowland, M and Oxborough, R and Moore, S and Tungu, P and Sherrard-Smith, E and Churcher, TS},
doi = {10.1016/j.crpvbd.2021.100047},
journal = {Current Research in Parasitology & Vector-Borne Diseases},
pages = {1--13},
title = {Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa},
url = {http://dx.doi.org/10.1016/j.crpvbd.2021.100047},
volume = {1},
year = {2021}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Resistance of anopheline mosquitoes to pyrethroid insecticides is spreading rapidly across sub-Saharan Africa, diminishing the efficacy of insecticide-treated nets (ITNs) – the primary tool for preventing malaria. The entomological efficacy of indoor vector control interventions can be measured in experimental hut trials (EHTs), where hut structures resemble local housing, but allow the collection of mosquitoes that entered, exited, blood-fed and/or died. There is a need to understand how the spread of resistance changes ITN efficacy and to elucidate factors influencing EHT results, including differences in experimental hut design, to support the development of novel vector control tools. A comprehensive database of EHTs was compiled following a systematic review to identify all known trials investigating ITNs or indoor residual spraying across sub-Saharan Africa. This analysis focuses on EHTs investigating ITNs and uses Bayesian statistical models to characterise the complex interaction between ITNs and mosquitoes, the between-study variability, and the impact of pyrethroid resistance. As resistance rises, the entomological efficacy of ITNs declines. They induce less mortality and are less likely to deter mosquitoes from entering huts. Despite this, ITNs continue to offer considerable personal protection by reducing mosquito feeding until resistance reaches high levels. There are clear associations between the different entomological impacts of ITNs, though there is still substantial variability between studies, some of which can be accounted for by hut design. The relationship between EHT outcomes and the level of resistance (as measured by discriminating dose bioassays) is highly uncertain. The meta-analyses show that EHTs are an important reproducible assay for capturing the complex entomological efficacy of ITNs on blood-feeding mosquitoes. The impact of pyrethroid resistance on these measures appears broadly consistent across a wide geographical area onc
AU - Nash,RK
AU - Lambert,B
AU - NGuessan,R
AU - Ngufor,C
AU - Rowland,M
AU - Oxborough,R
AU - Moore,S
AU - Tungu,P
AU - Sherrard-Smith,E
AU - Churcher,TS
DO - 10.1016/j.crpvbd.2021.100047
EP - 13
PY - 2021///
SN - 2667-114X
SP - 1
TI - Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa
T2 - Current Research in Parasitology & Vector-Borne Diseases
UR - http://dx.doi.org/10.1016/j.crpvbd.2021.100047
UR - https://www.sciencedirect.com/science/article/pii/S2667114X21000418?via%3Dihub
UR - http://hdl.handle.net/10044/1/91319
VL - 1
ER -