The Centre has a long history of developing new techniques for medical imaging (particularly in magnetic resonance imaging), transforming them from a primarily diagnostic modality into an interventional and therapeutic platform. This is facilitated by the Centre's strong engineering background in practical imaging and image analysis platform development, as well as advances in minimal access and robotic assisted surgery. Hamlyn has a strong tradition in pursuing basic sciences and theoretical research, with a clear focus on clinical translation.

In response to the current paradigm shift and clinical demand in bringing cellular and molecular imaging modalities to an in vivo – in situ setting during surgical intervention, our recent research has also been focussed on novel biophotonics platforms that can be used for real-time tissue characterisation, functional assessment, and intraoperative guidance during minimally invasive surgery. This includes, for example, SMART confocal laser endomicroscopy, time-resolved fluorescence spectroscopy and flexible FLIM catheters.


Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Keir GJ, Nair A, Giannarou S, Yang G-Z, Oldershaw P, Wort SJ, MacDonald P, Hansell DM, Wells AUet al., 2015,

    Pulmonary vasospasm in systemic sclerosis: noninvasive techniques for detection

    , Pulmonary Circulation, Vol: 5, Pages: 498-505, ISSN: 2045-8940

    In a subgroup of patients with systemic sclerosis (SSc), vasospasm affecting the pulmonary circulation may contribute to worsening respiratory symptoms, including dyspnea. Noninvasive assessment of pulmonary blood flow (PBF), utilizing inert-gas rebreathing (IGR) and dual-energy computed-tomography pulmonary angiography (DE-CTPA), may be useful for identifying pulmonary vasospasm. Thirty-one participants (22 SSc patients and 9 healthy volunteers) underwent PBF assessment with IGR and DE-CTPA at baseline and after provocation with a cold-air inhalation challenge (CACh). Before the study investigations, participants were assigned to subgroups: group A included SSc patients who reported increased breathlessness after exposure to cold air (n = 11), group B included SSc patients without cold-air sensitivity (n = 11), and group C patients included the healthy volunteers. Median change in PBF from baseline was compared between groups A, B, and C after CACh. Compared with groups B and C, in group A there was a significant decline in median PBF from baseline at 10 minutes (−10%; range: −52.2% to 4.0%; P < 0.01), 20 minutes (−17.4%; −27.9% to 0.0%; P < 0.01), and 30 minutes (−8.5%; −34.4% to 2.0%; P < 0.01) after CACh. There was no significant difference in median PBF change between groups B or C at any time point and no change in pulmonary perfusion on DE-CTPA. Reduction in pulmonary blood flow following CACh suggests that pulmonary vasospasm may be present in a subgroup of patients with SSc and may contribute to worsening dyspnea on exposure to cold.

  • Journal article
    Shen M, Giannarou S, Yang G-Z, 2015,

    Robust camera localisation with depth reconstruction for bronchoscopic navigation

    , International Journal of Computer Assisted Radiology and Surgery, Vol: 10, Pages: 801-813, ISSN: 1861-6410

    PurposeBronchoscopy is a standard technique for airway examination, providing a minimally invasive approach for both diagnosis and treatment of pulmonary diseases. To target lesions identified pre-operatively, it is necessary to register the location of the bronchoscope to the CT bronchial model during the examination. Existing vision-based techniques rely on the registration between virtually rendered endobronchial images and videos based on image intensity or surface geometry. However, intensity-based approaches are sensitive to illumination artefacts, while gradient-based approaches are vulnerable to surface texture.MethodsIn this paper, depth information is employed in a novel way to achieve continuous and robust camera localisation. Surface shading has been used to recover depth from endobronchial images. The pose of the bronchoscopic camera is estimated by maximising the similarity between the depth recovered from a video image and that captured from a virtual camera projection of the CT model. The normalised cross-correlation and mutual information have both been used and compared for the similarity measure.ResultsThe proposed depth-based tracking approach has been validated on both phantom and in vivo data. It outperforms the existing vision-based registration methods resulting in smaller pose estimation error of the bronchoscopic camera. It is shown that the proposed approach is more robust to illumination artefacts and surface texture and less sensitive to camera pose initialisation.ConclusionsA reliable camera localisation technique has been proposed based on depth information for bronchoscopic navigation. Qualitative and quantitative performance evaluations show the clinical value of the proposed framework.

  • Patent
    Ye M, 2015,

    Method and Apparatus

    , WO/2015/033147
  • Conference paper
    Koutsoumpa C, Simpson R, Keegan J, Firmin D, Yang G-Zet al., 2015,

    Restoration of Phase-Contrast Cardiovascular MRI for the Construction of Cardiac Contractility Atlases

    , 5th International Workshop, (STACOM), Publisher: SPRINGER-VERLAG BERLIN, Pages: 275-283, ISSN: 0302-9743
  • Conference paper
    Zhang L, Lee S-L, Yang G-Z, Mylonas GPet al., 2014,

    Semi-autonomous navigation for robot assisted tele-echography using generalized shape models and co-registered RGB-D cameras

    , IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), Publisher: IEEE, Pages: 3496-3502

    — This paper proposes a semi-autonomous navigatedmaster-slave system, for robot assisted remote echography forearly trauma assessment. Two RGB-D sensors are used tocapture real-time 3D information of the scene at the slave sidewhere the patient is located. A 3D statistical shape model isbuilt and used to generate a customized patient model basedon the point cloud generated by the RGB-D sensors. Thecustomized patient model can be updated and adaptively fittedto the patient. The model is also used to generate a trajectoryto navigate a KUKA robotic arm and safely conduct theultrasound examination. Extensive validation of the proposedsystem shows promising results in terms of accuracy androbustness.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=757&limit=5&page=4&respub-action=search.html Current Millis: 1590781241739 Current Time: Fri May 29 20:40:41 BST 2020