The Centre has a long history of developing new techniques for medical imaging (particularly in magnetic resonance imaging), transforming them from a primarily diagnostic modality into an interventional and therapeutic platform. This is facilitated by the Centre's strong engineering background in practical imaging and image analysis platform development, as well as advances in minimal access and robotic assisted surgery. Hamlyn has a strong tradition in pursuing basic sciences and theoretical research, with a clear focus on clinical translation.

In response to the current paradigm shift and clinical demand in bringing cellular and molecular imaging modalities to an in vivo – in situ setting during surgical intervention, our recent research has also been focussed on novel biophotonics platforms that can be used for real-time tissue characterisation, functional assessment, and intraoperative guidance during minimally invasive surgery. This includes, for example, SMART confocal laser endomicroscopy, time-resolved fluorescence spectroscopy and flexible FLIM catheters.

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Zhao M, Oude Vrielink TJC, Kogkas A, Runciman M, Elson D, Mylonas Get al., 2020,

    LaryngoTORS: a novel cable-driven parallel robotic system for transoral laser phonosurgery

    , IEEE Robotics and Automation Letters, Vol: 5, Pages: 1516-1523, ISSN: 2377-3766

    Transoral laser phonosurgery is a commonly used surgical procedure in which a laser beam is used to perform incision, ablation or photocoagulation of laryngeal tissues. Two techniques are commonly practiced: free beam and fiber delivery. For free beam delivery, a laser scanner is integrated into a surgical microscope to provide an accurate laser scanning pattern. This approach can only be used under direct line of sight, which may cause increased postoperative pain to the patient and injury, is uncomfortable for the surgeon during prolonged operations, the manipulability is poor and extensive training is required. In contrast, in the fiber delivery technique, a flexible fiber is used to transmit the laser beam and therefore does not require direct line of sight. However, this can only achieve manual level accuracy, repeatability and velocity, and does not allow for pattern scanning. Robotic systems have been developed to overcome the limitations of both techniques. However, these systems offer limited workspace and degrees-of-freedom (DoF), limiting their clinical applicability. This work presents the LaryngoTORS, a robotic system that aims at overcoming the limitations of the two techniques, by using a cable-driven parallel mechanism (CDPM) attached at the end of a curved laryngeal blade for controlling the end tip of the laser fiber. The system allows autonomous generation of scanning patterns or user driven freepath scanning. Path scan validation demonstrated errors as low as 0.054±0.028 mm and high repeatability of 0.027±0.020 mm (6×2 mm arc line). Ex vivo tests on chicken tissue have been carried out. The results show the ability of the system to overcome limitations of current methods with high accuracy and repeatability using the superior fiber delivery approach.

  • Conference paper
    He C, Chang J, He H, Liu S, Elson DS, Ma H, Booth MJet al., 2020,

    GRIN lens based polarization endoscope – from conception to application

    , Label-free Biomedical Imaging and Sensing (LBIS) 2020, Publisher: SPIE

    Graded index (GRIN) lenses focus light through a radially symmetric refractive index profile. It is not widely appreciated that the ion-exchange process that creates the index profile also causes a radially symmetric birefringence variation. This property is usually considered a nuisance, such that manufacturing processes are optimized to keep it to a minimum. Here, a new Mueller matrix (MM) polarimeter based on a spatially engineered polarization state generating array and GRIN lens cascade for measuring the MM of a region of a sample in a single-shot is presented. We explore using the GRIN lens cascade for a functional analyzer to calculate multiple Stokes vectors and the MM of the target in a snapshot. A designed validation sample is used to test the reliability of this polarimeter. To understand more potential biomedical applications, human breast ductal carcinoma slides at two pathological progression stages are detected by this polarimeter. The MM polar decomposition parameters then can be calculated from the measured MMs, and quantitatively compared with the equivalent data sampled by a MM microscope. The results indicate that the polarimeter and the measured polarization parameters are capable of differentiating the healthy and carcinoma status of human breast tissue efficiently. It has potential to act as a polarization detected fiber-based probe to assist further minimally invasive clinical diagnosis.

  • Journal article
    Keshavarz M, Kassanos P, Tan B, Venkatakrishnan Ket al., 2020,

    Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics

    , NANOSCALE HORIZONS, Vol: 5, Pages: 294-307, ISSN: 2055-6756
  • Conference paper
    Cartucho J, Tukra S, Li Y, Elson D, Giannarou Set al., 2020,

    VisionBlender: A Tool for Generating Computer Vision Datasets in Robotic Surgery (best paper award)

    , Joint MICCAI 2020 Workshop on Augmented Environments for Computer-Assisted Interventions (AE-CAI), Computer-Assisted Endoscopy (CARE) and Context-Aware Operating Theatres 2.0 (OR2.0)
  • Conference paper
    Huang B, Tsai Y-Y, Cartucho J, Tuch D, Giannarou S, Elson Det al., 2020,

    Tracking and Visualization of the Sensing Area for a Tethered Laparoscopic Gamma Probe

    , Information Processing in Computer Assisted Intervention (IPCAI)

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=757&limit=5&page=4&respub-action=search.html Current Millis: 1620303977527 Current Time: Thu May 06 13:26:17 BST 2021