The MIM Lab develops robotic and mechatronics surgical systems for a variety of procedures.

Head of Group

Prof Ferdinando Rodriguez y Baena

B415C Bessemer Building
South Kensington Campus

+44 (0)20 7594 7046

⇒ X: @fmryb

 

What we do

The Mechatronics in Medicine Laboratory develops robotic and mechatronics surgical systems for a variety of procedures including neuro, cardiovascular, orthopaedic surgeries, and colonoscopies. Examples include bio-inspired catheters that can navigate along complex paths within the brain (such as EDEN2020), soft robots to explore endoluminal anatomies (such as the colon), and virtual reality solutions to support surgeons during knee replacement surgeries.

Why is it important

The integration of mechatronics into medicine addresses critical challenges in modern healthcare by enhancing the precision, safety, and efficiency of surgical procedures. Traditional surgeries often involve significant risks and extended recovery times. By developing robotic systems that offer greater accuracy and control, we aim to minimise these risks and reduce invasiveness. Our research contributes to the advancement of minimally invasive techniques, which are essential for improving patient outcomes and optimising healthcare resources. Furthermore, our work supports the training of the next generation of surgeons, equipping them with cutting-edge tools and methodologies that reflect the evolving landscape of medical technology.

How can it benefit patients

Patients stand to gain significantly from the innovations developed at the Mechatronics in Medicine Laboratory. Our robotic systems are designed to perform surgeries with enhanced precision, leading to fewer complications and faster recovery times. Minimally invasive procedures facilitated by our technologies result in less postoperative pain and reduced scarring, improving the overall patient experience. Additionally, the increased accuracy of our systems can lead to better surgical outcomes, such as more complete tumour removals or more precise joint replacements, thereby improving long-term health prospects. By pushing the boundaries of medical robotics, we strive to make advanced surgical care more accessible and effective for patients worldwide.

Meet the team

Dr Zejian Cui

Dr Zejian Cui
Research Associate

Mr Spyridon Souipas

Mr Spyridon Souipas
Casual - Other work

Citation

BibTex format

@article{Aktas:2023:10.3390/biomedicines11072008,
author = {Aktas, A and Demircali, AA and Secoli, R and Temelkuran, B and Rodriguez, y Baena F},
doi = {10.3390/biomedicines11072008},
journal = {Biomedicines},
pages = {1--17},
title = {Towards a procedure-optimised steerable catheter for deep-seated neurosurgery},
url = {http://dx.doi.org/10.3390/biomedicines11072008},
volume = {11},
year = {2023}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - In recent years, steerable needles have attracted significant interest in relation to minimally invasive surgery (MIS). Specifically, the flexible, programmable bevel-tip needle (PBN) concept was successfully demonstrated in vivo in an evaluation of the feasibility of convection-enhanced delivery (CED) for chemotherapeutics within the ovine model with a 2.5 mm PBN prototype. However, further size reductions are necessary for other diagnostic and therapeutic procedures and drug delivery operations involving deep-seated tissue structures. Since PBNs have a complex cross-section geometry, standard production methods, such as extrusion, fail, as the outer diameter is reduced further. This paper presents our first attempt to demonstrate a new manufacturing method for PBNs that employs thermal drawing technology. Experimental characterisation tests were performed for the 2.5 mm PBN and the new 1.3 mm thermally drawn (TD) PBN prototype described here. The results show that thermal drawing presents a significant advantage in miniaturising complex needle structures. However, the steering behaviour was affected due to the choice of material in this first attempt, a limitation which will be addressed in future work.
AU - Aktas,A
AU - Demircali,AA
AU - Secoli,R
AU - Temelkuran,B
AU - Rodriguez,y Baena F
DO - 10.3390/biomedicines11072008
EP - 17
PY - 2023///
SN - 2227-9059
SP - 1
TI - Towards a procedure-optimised steerable catheter for deep-seated neurosurgery
T2 - Biomedicines
UR - http://dx.doi.org/10.3390/biomedicines11072008
UR - https://www.mdpi.com/2227-9059/11/7/2008
VL - 11
ER -

Contact Us

General enquiries

Facility enquiries


The Hamlyn Centre
Bessemer Building
South Kensington Campus
Imperial College
London, SW7 2AZ
Map location