Research in surgical robotics has an established track record at Imperial College, and a number of research and commercial surgical robot platforms have been developed over the years. The Hamlyn Centre is a champion for technological innovation and clinical adoption of robotic, minimally invasive surgery. We work in partnership with major industrial leaders in medical devices and surgical robots, as well as developing our own platforms such as the i-Snake® and Micro-IGES platforms. The Da Vinci surgical robot is used extensively for endoscopic radical prostatectomy, hiatal hernia surgery, and low pelvic and rectal surgery, and in 2003, St Mary’s Hospital carried out its first Totally Endoscopic Robotic Coronary Artery Bypass (TECAB).

The major focus of the Hamlyn Centre is to develop robotic technologies that will transform conventional minimally invasive surgery, explore new ways of empowering robots with human intelligence, and develop[ing miniature 'microbots' with integrated sensing and imaging for targeted therapy and treatment. We work closely with both industrial and academic partners in open platforms such as the DVRK, RAVEN and KUKA. The Centre also has the important mission of driving down costs associated with robotic surgery in order to make the technology more accessible, portable, and affordable. This will allow it to be fully integrated with normal surgical workflows so as to benefit a much wider patient population.

The Hamlyn Centre currently chairs the UK Robotics and Autonomous Systems (UK-RAS) Network. The mission of the Network is to to provide academic leadership in Robotics and Autonomous Systems (RAS), expand collaboration with industry and integrate and coordinate activities across the UK Engineering and Physical Sciences Research Council (EPSRC) funded RAS capital facilities and Centres for Doctoral Training (CDTs).


Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Conference paper
    Wisanuvej P, Giataganas PG, Leibrandt KL, Liu JL, Hughes MH, Yang GZYet al., 2017,

    Three-dimensional robotic-assisted endomicroscopy with a force adaptive robotic arm

    , IEEE International Conference on Robotics and Automation (ICRA), Publisher: IEEE

    Effective in situ, in vivo tumour margin assessment is an important, yet unmet, clinical demand in surgical oncology. Recent advances in probe-based optical imaging tools such as confocal endomicroscopy is making inroads in clinical applications. In practice, maintaining consistent tissue contact whilst ensuring large area surveillance is crucial for its practical adoption and for this reason there is a great demand for robotic assistance so that high-speed endomicroscopes can be combined with autonomous scanning, thus simplifying its incorporation in routine surgical workflows. In this paper, a cooperatively controlled robotic manipulator is developed, which provides a stable mechatronically-enhanced platform for micro-scanning tools to perform local high resolution mosaics over 3D undulating moving surfaces. Detailed kinematic and overall system performance analyses are provided and the results demonstrate the adaptability in terms of both contact force and orientation control of the system, and thus its simplicity in practical deployment and value for clinical adoption.

  • Journal article
    Wang W, Liu J, Xie G, Wen L, Zhang Jet al., 2017,

    A bio-inspired electrocommunication system for small underwater robots.

    , Bioinspir Biomim, Vol: 12, Pages: 036002-036002

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  • Journal article
    Shang J, Leibrandt K, Giataganas P, Vitiello V, Seneci CA, Wisanuvej P, Liu J, Gras G, Clark J, Darzi A, Yang G-Zet al., 2017,

    A Single-Port Robotic System for Transanal Microsurgery—Design and Validation

    , IEEE Robotics and Automation Letters, Vol: 2, Pages: 1510-1517, ISSN: 2377-3766

    This letter introduces a single-port robotic platform for transanal endoscopic microsurgery (TEMS). Two robotically controlled articulated surgical instruments are inserted via a transanal approach to perform submucosal or full-thickness dissection. This system is intended to replace the conventional TEMS approach that uses manual laparoscopic instruments. The new system is based on master-slave robotically controlled tele-manipulation. The slave robot comprises a support arm that is mounted on the operating table, supporting a surgical port and a robotic platform that drives the surgical instruments. The master console includes a pair of haptic devices, as well as a three-dimensional display showing the live video stream of a stereo endoscope inserted through the surgical port. The surgical instrumentation consists of energy delivery devices, graspers, and needle drivers allowing a full TEMS procedure to be performed. Results from benchtop tests, ex vivo animal tissue evaluation, and in vivo studies demonstrate the clinical advantage of the proposed system.

  • Conference paper
    Grammatikopoulou M, Leibrandt K, Yang G, 2016,

    Motor channelling for safe and effective dynamic constraints in Minimally Invasive Surgery

    , 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Publisher: IEEE, ISSN: 2153-0866

    Motor channelling is a concept to provide na-vigation and sensory feedback to operators in master-slavesurgical setups. It is beneficial since the introduction of roboticsurgery creates a physical separation between the surgeonand patient anatomy. Active Constraints/Virtual Fixtures areproposed which integrate Guidance and Forbidden RegionConstraints into a unified control framework. The developedapproach provides guidance and safe manipulation to improveprecision and reduce the risk of inadvertent tissue damage.Online three-degree-of-freedom motion prediction and compen-sation of the target anatomy is performed to complement themaster constraints. The presented Active Constraints conceptis applied to two clinical scenarios; surface scanning forin situmedical imaging and vessel manipulation in cardiacsurgery. The proposed motor channelling control strategy isimplemented on the da Vinci Surgical System using the da VinciResearch Kit (dVRK) and its effectiveness is demonstratedthrough a detailed user study.

  • Conference paper
    Wisanuvej P, Leibrandt KL, Liu JL, Yang GZYet al., 2016,

    Hands-on reconfigurable robotic surgical instrument holder arm

    , IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Publisher: IEEE, ISSN: 2153-0866

    Abstract:The use of conventional surgical tool holders requires an assistant during positioning and adjustment due to the lack of weight compensation. In this paper, we introduce a robotic arm system with hands-on control approach. The robot incorporates a force sensor at the end effector which realises tool weight compensation as well as hands-on manipulation. On the operating table, the required workspace can be tight due to a number of instruments required. There are situations where the surgical tool is at the desired location but the holder arm pose is not ideal due to space constraints or obstacles. Although the arm is a non-redundant robot because of the limited degrees of freedom, the pseudo-null-space inverse kinematics can be used to constrain a particular joint of the robot to a specific angle while the other joints compensate in order to minimise the tool movement. This allows operator to adjust the arm configuration conveniently together with the weight compensation. Experimental results demonstrated that our robotic arm can maintain the tool position during reconfiguration significantly more stably than a conventional one.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=759&limit=5&page=1&respub-action=search.html Current Millis: 1579607602457 Current Time: Tue Jan 21 11:53:22 GMT 2020