Research in surgical robotics has an established track record at Imperial College, and a number of research and commercial surgical robot platforms have been developed over the years. The Hamlyn Centre is a champion for technological innovation and clinical adoption of robotic, minimally invasive surgery. We work in partnership with major industrial leaders in medical devices and surgical robots, as well as developing our own platforms such as the i-Snake® and Micro-IGES platforms. The Da Vinci surgical robot is used extensively for endoscopic radical prostatectomy, hiatal hernia surgery, and low pelvic and rectal surgery, and in 2003, St Mary’s Hospital carried out its first Totally Endoscopic Robotic Coronary Artery Bypass (TECAB).

The major focus of the Hamlyn Centre is to develop robotic technologies that will transform conventional minimally invasive surgery, explore new ways of empowering robots with human intelligence, and develop[ing miniature 'microbots' with integrated sensing and imaging for targeted therapy and treatment. We work closely with both industrial and academic partners in open platforms such as the DVRK, RAVEN and KUKA. The Centre also has the important mission of driving down costs associated with robotic surgery in order to make the technology more accessible, portable, and affordable. This will allow it to be fully integrated with normal surgical workflows so as to benefit a much wider patient population.

The Hamlyn Centre currently chairs the UK Robotics and Autonomous Systems (UK-RAS) Network. The mission of the Network is to to provide academic leadership in Robotics and Autonomous Systems (RAS), expand collaboration with industry and integrate and coordinate activities across the UK Engineering and Physical Sciences Research Council (EPSRC) funded RAS capital facilities and Centres for Doctoral Training (CDTs).


Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • JOURNAL ARTICLE
    Leibrandt K, Wisanuvej P, Gras G, Shang J, Seneci CA, Giataganas P, Vitiello V, Darzi A, Yang G-Zet al., 2017,

    Effective Manipulation in Confined Spaces of Highly Articulated Robotic Instruments for Single Access Surgery

    , IEEE Robotics and Automation Letters, Vol: 2, Pages: 1704-1711, ISSN: 2377-3766

    The field of robotic surgery increasingly advances towards highly articulated and continuum robots, requiring new kinematic strategies to enable users to perform dexterous manipulation in confined workspaces. This development is driven by surgical interventions accessing the surgical workspace through natural orifices such as the mouth or the anus. Due to the long and narrow nature of these access pathways, external triangulation at the fulcrum point is very limited or absent, which makes introducing multiple degrees of freedom at the distal end of the instrument necessary. Additionally, high force and miniaturization requirements make the control of such instruments particularly challenging. This letter presents the kinematic considerations needed to effectively manipulate these novel instruments and allow us their dexterous control in confined spaces. A nonlinear calibration model is further used to map joint to actuator space and improve significantly the precision of the instrument's motion. The effectiveness of the presented approach is quantified with bench tests, and the usability of the system is assessed by three user studies simulating the requirements of a realistic surgical task.

  • JOURNAL ARTICLE
    Shang J, Leibrandt K, Giataganas P, Vitiello V, Seneci CA, Wisanuvej P, Liu J, Gras G, Clark J, Darzi A, Yang G-Zet al., 2017,

    A Single-Port Robotic System for Transanal Microsurgery—Design and Validation

    , IEEE Robotics and Automation Letters, Vol: 2, Pages: 1510-1517, ISSN: 2377-3766

    This letter introduces a single-port robotic platform for transanal endoscopic microsurgery (TEMS). Two robotically controlled articulated surgical instruments are inserted via a transanal approach to perform submucosal or full-thickness dissection. This system is intended to replace the conventional TEMS approach that uses manual laparoscopic instruments. The new system is based on master-slave robotically controlled tele-manipulation. The slave robot comprises a support arm that is mounted on the operating table, supporting a surgical port and a robotic platform that drives the surgical instruments. The master console includes a pair of haptic devices, as well as a three-dimensional display showing the live video stream of a stereo endoscope inserted through the surgical port. The surgical instrumentation consists of energy delivery devices, graspers, and needle drivers allowing a full TEMS procedure to be performed. Results from benchtop tests, ex vivo animal tissue evaluation, and in vivo studies demonstrate the clinical advantage of the proposed system.

  • JOURNAL ARTICLE
    Andreu Perez J, Cao F, Hagras H, Yang Get al., 2016,

    A self-adaptive online brain machine interface of a humanoid robot through a general type-2 fuzzy inference system

    , IEEE Transactions on Fuzzy Systems, ISSN: 1941-0034

    This paper presents a self-adaptive general type-2 fuzzy inference system (GT2 FIS) for online motor imagery (MI) decoding to build a brain-machine interface (BMI) and navigate a bi-pedal humanoid robot in a real experiment, using EEG brain recordings only. GT2 FISs are applied to BMI for the first time in this study. We also account for several constraints commonly associated with BMI in real practice: 1) maximum number ofelectroencephalography (EEG) channels is limited and fixed, 2) no possibility of performing repeated user training sessions, and 3) desirable use of unsupervised and low complexity features extraction methods. The novel learning method presented in this paper consists of a self-adaptive GT2 FIS that can both incrementally update its parameters and evolve (a.k.a. self-adapt) its structure via creation, fusion and scaling of the fuzzy system rules in an online BMI experiment with a real robot. The structureidentification is based on an online GT2 Gath-Geva algorithm where every MI decoding class can be represented by multiple fuzzy rules (models). The effectiveness of the proposed method is demonstrated in a detailed BMI experiment where 15 untrained users were able to accurately interface with a humanoid robot, in a single thirty-minute experiment, using signals from six EEG electrodes only.

  • CONFERENCE PAPER
    Grammatikopoulou M, Leibrandt K, Yang G, 2016,

    Motor channelling for safe and effective dynamic constraints in Minimally Invasive Surgery

    , 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Publisher: IEEE, ISSN: 2153-0866

    Motor channelling is a concept to provide na-vigation and sensory feedback to operators in master-slavesurgical setups. It is beneficial since the introduction of roboticsurgery creates a physical separation between the surgeonand patient anatomy. Active Constraints/Virtual Fixtures areproposed which integrate Guidance and Forbidden RegionConstraints into a unified control framework. The developedapproach provides guidance and safe manipulation to improveprecision and reduce the risk of inadvertent tissue damage.Online three-degree-of-freedom motion prediction and compen-sation of the target anatomy is performed to complement themaster constraints. The presented Active Constraints conceptis applied to two clinical scenarios; surface scanning forin situmedical imaging and vessel manipulation in cardiacsurgery. The proposed motor channelling control strategy isimplemented on the da Vinci Surgical System using the da VinciResearch Kit (dVRK) and its effectiveness is demonstratedthrough a detailed user study.

  • CONFERENCE PAPER
    Wisanuvej P, Leibrandt KL, Liu JL, Yang GZYet al., 2016,

    Hands-on reconfigurable robotic surgical instrument holder arm

    , IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Publisher: IEEE, ISSN: 2153-0866

    Abstract:The use of conventional surgical tool holders requires an assistant during positioning and adjustment due to the lack of weight compensation. In this paper, we introduce a robotic arm system with hands-on control approach. The robot incorporates a force sensor at the end effector which realises tool weight compensation as well as hands-on manipulation. On the operating table, the required workspace can be tight due to a number of instruments required. There are situations where the surgical tool is at the desired location but the holder arm pose is not ideal due to space constraints or obstacles. Although the arm is a non-redundant robot because of the limited degrees of freedom, the pseudo-null-space inverse kinematics can be used to constrain a particular joint of the robot to a specific angle while the other joints compensate in order to minimise the tool movement. This allows operator to adjust the arm configuration conveniently together with the weight compensation. Experimental results demonstrated that our robotic arm can maintain the tool position during reconfiguration significantly more stably than a conventional one.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=759&limit=5&page=2&respub-action=search.html Current Millis: 1561474620923 Current Time: Tue Jun 25 15:57:00 BST 2019