A primary motivation of our research is the monitoring of physical, physiological, and biochemical parameters - in any environment and without activity restriction and behaviour modification - through using miniaturised, wireless Body Sensor Networks (BSN). Key research issues that are currently being addressed include novel sensor designs, ultra-low power microprocessor and wireless platforms, energy scavenging, biocompatibility, system integration and miniaturisation, processing-on-node technologies combined with novel ASIC design, autonomic sensor networks and light-weight communication protocols. Our research is aimed at addressing the future needs of life-long health, wellbeing and healthcare, particularly those related to demographic changes associated with an ageing population and patients with chronic illnesses. This research theme is therefore closely aligned with the IGHI’s vision of providing safe, effective and accessible technologies for both developed and developing countries.

Some of our latest works were exhibited at the 2015 Royal Society Summer Science Exhibition.


Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Chen C-M, Anastasova S, Zhang K, Rosa BG, Lo BPL, Assender HE, Yang G-Zet al., 2020,

    Towards Wearable and Flexible Sensors and Circuits Integration for Stress Monitoring

    , IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, Vol: 24, Pages: 2208-2215, ISSN: 2168-2194
  • Journal article
    Gao A, Liu N, Shen M, Abdelaziz MEMK, Temelkuran B, Yang G-Zet al., 2020,

    Laser-profiled continuum robot with integrated tension sensing for simultaneous shape and tip force estimation

    , Soft Robotics, Vol: 7, Pages: 421-443, ISSN: 2169-5172

    The development of miniaturized continuum robots has a wide range of applications in minimally invasive endoluminal interventions. To navigate inside tortuous lumens without impinging on the vessel wall and causing tissue damage or the risk of perforation, it is necessary to have simultaneous shape sensing of the continuum robot and its tip contact force sensing with the surrounding environment. Miniaturization and size constraint of the device have precluded the use of conventional sensing hardware and embodiment schemes. In this study, we propose the use of optical fibers for both actuation and tension/shape/force sensing. It uses a model-based method with structural compensation, allowing direct measurement of the cable tension near the base of the manipulator without increasing the dimensions. It further structurally filters out disturbances from the flexible shaft. In addition, a model is built by considering segment differences, cable interactions/cross talks, and external forces. The proposed model-based method can simultaneously estimate the shape of the manipulator and external force applied onto the robot tip. Detailed modeling and validation results demonstrate the accuracy and reliability of the proposed method for the miniaturized continuum robot for endoluminal intervention.

  • Journal article
    Zhang D, Wu Z, Chen J, Gao A, Chen X, Li P, Wang Z, Yang G, Lo B, Yang G-Zet al., 2020,

    Automatic Microsurgical Skill Assessment Based on Cross-Domain Transfer Learning

    , IEEE ROBOTICS AND AUTOMATION LETTERS, Vol: 5, Pages: 4148-4155, ISSN: 2377-3766
  • Journal article
    Barbot A, Power M, Seichepine F, Yang G-Zet al., 2020,

    Liquid seal for compact micro-piston actuation at capillary tip

    , Science Advances, Vol: 6, ISSN: 2375-2548

    Actuators at the tip of a sub-millimetric catheter could facilitatein vivointer-ventional procedures at cellular scales by enabling tissue biopsy, manipulationor supporting active micro-optics. However the dominance of frictional forcesat this scale makes classical mechanism problematic. In this paper, we reportthe design of a micro-scale piston, with a maximum dimension of 150μm,fabricated with two-photon lithography onto the tip of 140μm diameter cap-illaries. An oil drop method is used to create a seal between the piston andthe cylinder which prevents any leakage below 185 mbar pressure differencewhile providing lubricated friction between moving parts. This piston gener-ates forces that increase linearly with pressure up to 130μN without breakingthe liquid seal. The practical value of the design is demonstrated with its inte-gration with a micro-gripper that can grasp, move and release 50μm micro-spheres. Such a mechanism opens the way to micron-size catheter actuation.

  • Journal article
    Kim JA, Wales D, Thompson A, Yang G-Zet al., 2020,

    Fiber-optic SERS probes fabricated using two-photon polymerization for rapid detection of bacteria

    , Advanced Optical Materials, Vol: 8, Pages: 1-12, ISSN: 2195-1071

    This study presents a novel fiber-optic surface-enhanced Raman spectroscopy (SERS) probe (SERS-on-a-tip) fabricated using a simple, two-step protocol based on off-the-shelf components and materials, with a high degree of controllability and repeatability. Two-photon polymerization and subsequent metallization was adopted to fabricate a range of SERS arrays on both planar substrates and end-facets of optical fibers. For the SERS-on-a-tip probes, a limit of detection of 10-7 M (Rhodamine 6G) and analytical enhancement factors of up to 1300 were obtained by optimizing the design, geometry and alignment of the SERS arrays on the tip of the optical fiber. Furthermore, strong repeatability and consistency were achieved for the fabricated SERS arrays, demonstrating that the technique may be suitable for large-scale fabrication procedures in the future. Finally, rapid SERS detection of live Escherichia coli cells was demonstrated using integration times in the milliseconds to seconds range. This result indicates strong potential for in vivo diagnostic use, particularly for detection of infections. Moreover, to the best of our knowledge, this represents the first report of detection of live, unlabeled bacteria using a fiber-optic SERS probe.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=758&limit=5&respub-action=search.html Current Millis: 1603205710981 Current Time: Tue Oct 20 15:55:10 BST 2020