A primary motivation of our research is the monitoring of physical, physiological, and biochemical parameters - in any environment and without activity restriction and behaviour modification - through using miniaturised, wireless Body Sensor Networks (BSN). Key research issues that are currently being addressed include novel sensor designs, ultra-low power microprocessor and wireless platforms, energy scavenging, biocompatibility, system integration and miniaturisation, processing-on-node technologies combined with novel ASIC design, autonomic sensor networks and light-weight communication protocols. Our research is aimed at addressing the future needs of life-long health, wellbeing and healthcare, particularly those related to demographic changes associated with an ageing population and patients with chronic illnesses. This research theme is therefore closely aligned with the IGHI’s vision of providing safe, effective and accessible technologies for both developed and developing countries.

Some of our latest works were exhibited at the 2015 Royal Society Summer Science Exhibition.


Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Smith M, Withnall R, Anastasova S, Gil-Rosa B, Blackadder-Coward J, Taylor Net al., 2021,

    Developing a multimodal biosensor for remote physiological monitoring.

    , BMJ Mil Health

    INTRODUCTION: Several UK military expeditions have successfully used physiological sensors to monitor participant's physiological responses to challenging environmental conditions. This article describes the development and trial of a multimodal wearable biosensor that was used during the first all-female unassisted ski crossing of the Antarctic land mass. The project successfully transmitted remote real-time physiological data back to the UK. The ergonomic and technical lessons identified have informed recommendations for future wearable devices. METHOD: The biosensor devices were designed to be continuously worn against the skin and capture: HR, ECG, body surface temperature, bioimpedance, perspiration pH, sodium, lactate and glucose. The data were transmitted from the devices to an android smartphone using near-field technology. A custom-built App running on an android smartphone managed the secure transmission of the data to a UK research centre, using a commercially available satellite transceiver. RESULTS: Real-time physiological data, captured by the multimodal device, was successfully transmitted back to a UK research control centre on 6 occasions. Postexpedition feedback from the participants has contributed to the ergonomic and technical refinement of the next generation of devices. CONCLUSION: The future success of wearable technologies lies in establishing clinical confidence in the quality of the measured data and the accurate interpretation of those data in the context of the individual, the environment and activity being undertaken. In the near future, wearable physiological monitoring could improve point-of-care diagnostic accuracy and inform critical medical and command decisions.

  • Journal article
    Kassanos P, Seichepine F, Yang G-Z, 2021,

    A Comparison of Front-End Amplifiers for Tetrapolar Bioimpedance Measurements

    , IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, Vol: 70, ISSN: 0018-9456
  • Journal article
    Anastasova S, SpeharDélèze A, Kwasnicki RM, Yang G, Vadgama Pet al., 2020,

    Electrochemical monitoring of subcutaneous tissue pO2 fluctuations during exercise using a semi‐implantable needle electrode

    , Electroanalysis, Vol: 32, Pages: 2393-2403, ISSN: 1040-0397

    Semi‐implantable needle oxygen electrodes were used for forearm subcutaneous monitoring in human subjects undertaking high intensity cycling and fist clenching exercise. pO2 variations in the range between 40 and 100 mm Hg oxygen were seen. Superimposed on these were paradoxical rises in subcutaneous pO2, of up to 100 mm Hg which paralleled the scale of the exercise. This was indicative of increased blood flow through skin. Triton X‐100 incorporated into the sensor polyurethane membranes helped to give faster responses and reduced the possibility of biofouling and drift. The sterilizable system, free from internal electrolyte film appears promising for future clinical monitoring.

  • Journal article
    Keshavarz M, Chowdhury AKMRH, Kassanos P, Tan B, Venkatakrishnan Ket al., 2020,

    Self-assembled N-doped Q-dot carbon nanostructures as a SERS-active biosensor with selective therapeutic functionality

    , Sensors and Actuators B: Chemical, Vol: 323, Pages: 128703-128703, ISSN: 0925-4005
  • Journal article
    Li B, Tan H, Jenkins D, Srinivasa Raghavan V, Gil Rosa B, Guder F, Pan G, Yeatman E, Sharp Det al., 2020,

    Clinical detection of neurodegenerative blood biomarkers using graphene immunosensor

    , Carbon, Vol: 168, Pages: 144-162, ISSN: 0008-6223

    Accurate detection of blood biomarkers related to neurodegenerative diseases could provide a shortcut to identifying early stage patients before the onset of symptoms. The specificity, selectivity and operational requirements of the current technologies, however, preclude their use in the primary clinical setting for early detection. Graphene, an emerging 2D nanomaterial, is a promising candidate for biosensing which has the potential to meet the performance requirements and enable cost-effective, portable and rapid diagnosis. In this review, we compare graphene-based immunosensing technologies with conventional enzyme-linked immunosorbent assays and cutting-edge single molecule array techniques for the detection of blood-based neurodegenerative biomarkers. We cover the progress in electrical, electrochemical and optical graphene-based immunosensors and outline the barriers that slow or prevent the adoption of this emerging technology in primary clinical settings. We also highlight the possible solutions to overcome these barriers with an outlook on the future of the promising, graphene immunosensor technology.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=758&limit=5&respub-action=search.html Current Millis: 1618456936591 Current Time: Thu Apr 15 04:22:16 BST 2021