A primary motivation of our research is the monitoring of physical, physiological, and biochemical parameters - in any environment and without activity restriction and behaviour modification - through using miniaturised, wireless Body Sensor Networks (BSN). Key research issues that are currently being addressed include novel sensor designs, ultra-low power microprocessor and wireless platforms, energy scavenging, biocompatibility, system integration and miniaturisation, processing-on-node technologies combined with novel ASIC design, autonomic sensor networks and light-weight communication protocols. Our research is aimed at addressing the future needs of life-long health, wellbeing and healthcare, particularly those related to demographic changes associated with an ageing population and patients with chronic illnesses. This research theme is therefore closely aligned with the IGHI’s vision of providing safe, effective and accessible technologies for both developed and developing countries.

Some of our latest works were exhibited at the 2015 Royal Society Summer Science Exhibition.


Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Kim JA, Wales D, Thompson A, Yang G-Zet al., 2020,

    Fiber-optic SERS probes fabricated using two-photon polymerization for rapid detection of bacteria

    , Advanced Optical Materials, Vol: 8, Pages: 1-12, ISSN: 2195-1071

    This study presents a novel fiber-optic surface-enhanced Raman spectroscopy (SERS) probe (SERS-on-a-tip) fabricated using a simple, two-step protocol based on off-the-shelf components and materials, with a high degree of controllability and repeatability. Two-photon polymerization and subsequent metallization was adopted to fabricate a range of SERS arrays on both planar substrates and end-facets of optical fibers. For the SERS-on-a-tip probes, a limit of detection of 10-7 M (Rhodamine 6G) and analytical enhancement factors of up to 1300 were obtained by optimizing the design, geometry and alignment of the SERS arrays on the tip of the optical fiber. Furthermore, strong repeatability and consistency were achieved for the fabricated SERS arrays, demonstrating that the technique may be suitable for large-scale fabrication procedures in the future. Finally, rapid SERS detection of live Escherichia coli cells was demonstrated using integration times in the milliseconds to seconds range. This result indicates strong potential for in vivo diagnostic use, particularly for detection of infections. Moreover, to the best of our knowledge, this represents the first report of detection of live, unlabeled bacteria using a fiber-optic SERS probe.

  • Journal article
    Varghese RJ, Lo BPL, Yang G-Z, 2020,

    Design and prototyping of a bio-inspired kinematic sensing suit for the shoulder joint: precursor to a multi-DoF shoulder exosuit

    , IEEE Robotics and Automation Letters, Vol: 5, Pages: 540-547, ISSN: 2377-3766

    Soft wearable robots represent a promising new design paradigm for rehabilitation and active assistance applications. Their compliant nature makes them ideal for complex joints, but intuitive control of these robots require robust and compliant sensing mechanisms. In this work, we introduce the sensing framework for a multiple degrees-of-freedom shoulder exosuit capable of sensing the kinematics of the joint. The proposed sensing system is inspired by the body's embodied kinematic sensing, and the organisation of muscles and muscle synergies responsible for shoulder movements. A motion-capture-based evaluation study of the developed framework confirmed conformance with the behaviour of the muscles that inspired its routing. This validation of the tendon-routing hypothesis allows for it to be extended to the actuation framework of the exosuit in the future. The sensor-to-joint-space mapping is based on multivariate multiple regression and derived using an Artificial Neural Network. Evaluation of the derived mapping achieved root mean square error of ≈5.43° and ≃3.65° for the azimuth and elevation joint angles measured over 29,500 frames (4+ minutes) of motion-capture data.

  • Journal article
    Kiziroglou M, Temelkuran B, Yeatman E, Yang GZet al., 2020,

    Micro motion amplification – A Review

    , IEEE Access, Vol: 8, Pages: 64037-34055, ISSN: 2169-3536

    Many motion-active materials have recently emerged, with new methods of integration into actuator components and systems-on-chip. Along with established microprocessors, interconnectivity capabilities and emerging powering methods, they offer a unique opportunity for the development of interactive millimeter and micrometer scale systems with combined sensing and actuating capabilities. The amplification of nanoscale material motion to a functional range is a key requirement for motion interaction and practical applications, including medical micro-robotics, micro-vehicles and micro-motion energy harvesting. Motion amplification concepts include various types of leverage, flextensional mechanisms, unimorphs, micro-walking /micro-motor systems, and structural resonance. A review of the research state-of-art and product availability shows that the available mechanisms offer a motion gain in the range of 10. The limiting factor is the aspect ratio of the moving structure that is achievable in the microscale. Flexures offer high gains because they allow the application of input displacement in the close vicinity of an effective pivotal point. They also involve simple and monolithic fabrication methods allowing combination of multiple amplification stages. Currently, commercially available motion amplifiers can provide strokes as high as 2% of their size. The combination of high-force piezoelectric stacks or unimorph beams with compliant structure optimization methods is expected to make available a new class of high-performance motion translators for microsystems.

  • Journal article
    Ranque P, George C, Dubey RK, van der Jagt R, Flahaut D, Dedryvere R, Fehse M, Kassanos P, Jager WF, Sudholter EJR, Kelder EMet al., 2020,

    Scalable Route to Electroactive and Light Active Perylene Diimide Dye Polymer Binder for Lithium-Ion Batteries

    , ACS APPLIED ENERGY MATERIALS, Vol: 3, Pages: 2271-2277, ISSN: 2574-0962
  • Conference paper
    He C, Chang J, He H, Liu S, Elson DS, Ma H, Booth MJet al., 2020,

    GRIN lens based polarization endoscope – from conception to application

    , Label-free Biomedical Imaging and Sensing (LBIS) 2020, Publisher: SPIE

    Graded index (GRIN) lenses focus light through a radially symmetric refractive index profile. It is not widely appreciated that the ion-exchange process that creates the index profile also causes a radially symmetric birefringence variation. This property is usually considered a nuisance, such that manufacturing processes are optimized to keep it to a minimum. Here, a new Mueller matrix (MM) polarimeter based on a spatially engineered polarization state generating array and GRIN lens cascade for measuring the MM of a region of a sample in a single-shot is presented. We explore using the GRIN lens cascade for a functional analyzer to calculate multiple Stokes vectors and the MM of the target in a snapshot. A designed validation sample is used to test the reliability of this polarimeter. To understand more potential biomedical applications, human breast ductal carcinoma slides at two pathological progression stages are detected by this polarimeter. The MM polar decomposition parameters then can be calculated from the measured MMs, and quantitatively compared with the equivalent data sampled by a MM microscope. The results indicate that the polarimeter and the measured polarization parameters are capable of differentiating the healthy and carcinoma status of human breast tissue efficiently. It has potential to act as a polarization detected fiber-based probe to assist further minimally invasive clinical diagnosis.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=758&limit=5&page=5&respub-action=search.html Current Millis: 1634874619644 Current Time: Fri Oct 22 04:50:19 BST 2021