Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Mann PB, Afzal K, Long NJ, Thanou M, Green Met al., 2019,

    A glassware- free combinatorial synthesis of green quantum dots using bubble wrap

    , RSC ADVANCES, Vol: 9, Pages: 16851-16855, ISSN: 2046-2069
  • Journal article
    Morse SV, Pouliopoulos AN, Chan TG, Copping MJ, Lin J, Long NJ, Choi JJet al., 2019,

    Rapid short-pulse ultrasound delivers drugs uniformly across the murine blood-brain barrier with negligible disruption

    , Radiology, Vol: 291, Pages: 459-466, ISSN: 0033-8419

    Background Previous work has demonstrated that drugs can be delivered across the blood-brain barrier by exposing circulating microbubbles to a sequence of long ultrasound pulses. Although this sequence has successfully delivered drugs to the brain, concerns remain regarding potentially harmful effects from disrupting the brain vasculature. Purpose To determine whether a low-energy, rapid, short-pulse ultrasound sequence can efficiently and safely deliver drugs to the murine brain. Materials and Methods Twenty-eight female wild-type mice underwent focused ultrasound treatment after injections of microbubbles and a labeled model drug, while three control mice were not treated (May-November 2017). The left hippocampus of 14 mice was exposed to low-energy short pulses (1 MHz; five cycles; peak negative pressure, 0.35 MPa) of ultrasound emitted at a rapid rate (1.25 kHz) in bursts (0.5 Hz), and another 14 mice were exposed to standard long pulses (10 msec, 0.5 Hz) containing 150 times more acoustic energy. Mice were humanely killed at 0 (n = 5), 10 (n = 3), or 20 minutes (n = 3) after ultrasound treatment. Hematoxylin-eosin (H-E) staining was performed on three mice. The delivered drug dose and distribution were quantified with the normalized optical density and coefficient of variation. Safety was assessed by H-E staining, the amount of albumin released, and the duration of permeability change in the blood-brain barrier. Statistical analysis was performed by using the Student t test. Results The rapid short-pulse sequence delivered drugs uniformly throughout the parenchyma. The acoustic energy emitted from the microbubbles also predicted the delivered dose (r = 0.97). Disruption in the blood-brain barrier lasted less than 10 minutes and 3.4-fold less albumin was released into the brain than with long pulses. No vascular or tissue damage from rapid short-pulse exposure was observable using H-E staining. Conclusion The rapid short-pulse ultrasound sequence is a minimally

  • Journal article
    Hernandez-Gil J, Braga M, Harriss B, Carroll LS, Leow CH, Tang M-X, Aboagye EO, Long NJet al., 2019,

    Development of Ga-68-labelled ultrasound microbubbles for whole-body PET imaging

    , Chemical Science, Vol: 10, Pages: 5603-5615, ISSN: 2041-6520

    Microbubble (MB) contrast agents have revolutionalised the way ultrasound (US) imaging can be used clinically and pre-clinically. Contrast-enhanced US offers improvements in soft-tissue contrast, as well as the ability to visualise disease processes at the molecular level. However, its inability to provide in vivo whole-body imaging can hamper the development of new MB formulations. Herein, we describe a fast and efficient method for achieving 68Ga-labelling of MBs after a direct comparison of two different strategies. The optimised approach produces 68Ga-labelled MBs in good yields through the bioorthogonal inverse-electron-demand Diel–Alder reaction between a trans-cyclooctene-modified phospholipid and a new tetrazine-bearing HBED-CC chelator. The ability to noninvasively study the whole-body distribution of 68Ga-labelled MBs was demonstrated in vivo using positron emission tomography (PET). This method could be broadly applicable to other phospholipid-based formulations, providing accessible solutions for in vivo tracking of MBs.

  • Journal article
    Leow CH, Bush N, Stanziola A, Braga M, Shah A, Hernández-Gil J, Long NJ, Aboagye E, Bamber J, Tang Met al., 2019,

    3D microvascular imaging using high frame rate ultrasound and ASAP without contrast agents: development and initial in vivo evaluation on non-tumour and tumour models

    , IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol: 66, Pages: 939-948, ISSN: 0885-3010

    Three-dimensional imaging is valuable to non-invasively assess angiogenesis given the complex 3D architecture of vascular networks. The emergence of high frame rate (HFR) ultrasound, which can produce thousands of images per second, has inspired novel signal processing techniques and their applications in structural and functionalimaging of blood vessels. Although highly sensitive vascular mapping has been demonstrated using ultrafast Doppler, the detectability of microvasculature from the background noise may be hindered by the low signal to noise ratio (SNR) particularly in deeper region and without the use of contrast agents. We have recently demonstrated a coherence based technique, acoustic sub-aperture imaging (ASAP), for super-contrast vascular imaging and illustrated the contrast improvement using HFR contrast-enhanced ultrasound. In this work, we provide a feasibility study for microvascular imaging using ASAP without contrast agents, and extend its capability from 2D to volumetric vascular mapping. Using an ultrasound research system and a pre-clinical probe, we demonstrated the improved visibility of microvascular mapping using ASAP in comparison to ultrafast Power Doppler (PD) on a mouse kidney, liver and tumour without contrast agent injection. The SNR of ASAP images improves in average by 10dB when compared to PD. Besides, directional velocity mappings were also demonstrated by combining ASAP with the phase information extracted from lag-1 autocorrelation. Three-dimensional vascular and velocity mapping of the mouse kidney, liver and tumour were demonstrated by stackingthe ASAP images acquired using 2D ultrasound imaging and a trigger-controlled linear translation stage. The 3D results depicted clear micro-vasculature morphologies and function

  • Journal article
    Zhang G, Lin S, Leow CH, Pang KT, Hernandez Gil J, Long N, Eckersley R, Matsunaga T, Tang Met al., 2019,

    Quantification of vaporized targeted nanodroplets using high-frame-rate ultrasound and optics

    , Ultrasound in Medicine and Biology, Vol: 45, Pages: 1131-1142, ISSN: 0301-5629

    Owing to their ability to efficiently deliver biological cargo and sense the intracellular milieu, vertical arrays of high aspect ratio nanostructures, known as nanoneedles,are being developed as minimally invasive tools for cell manipulation. However, little is known of the mechanisms of cargo transfer across the cell membrane-nanoneedle interface. Particularly,the contributions of membrane piercing, modulation of membrane permeability and endocytosis to cargo transfer remain largelyunexplored. Here, combining state-of-the-art electron and scanning ion conductance microscopy with molecular biology techniques, we show that porous silicon nanoneedle arrays concurrently stimulate independent endocytic pathways which contribute to enhanced biomolecule delivery into human mesenchymal stem cells. Electron microscopy of the cell membrane at nanoneedle sites shows an intact lipid bilayer, accompanied by an accumulation of clathrin-coated pits and caveolae. Nanoneedles enhance the internalisation of biomolecular markers of endocytosis, highlighting the concurrent activation of caveolae-and clathrin-mediated endocytosis, alongside macropinocytosis. These events contribute to the nanoneedle-mediated delivery (nanoinjection) of nucleic acids into human stem cells, which distribute across the cytosol and the endolysosomal system. This data extends the understanding of how nanoneedles modulate biological processes to mediate interaction with the intracellular space, providing indications for the rational design of improved cell-manipulation technologies.

  • Conference paper
    Cooper S, Yue T, Miller P, Ma M, Long Net al., 2019,

    Tripodal N-centred phosphine ligands: Towards a novel donor set for <SUP>99m</SUP>Tc and <SUP>186/188</SUP>Re radiopharmaceutical formulation

    , Publisher: WILEY, Pages: S295-S296, ISSN: 0362-4803
  • Journal article
    Pensa E, Karpowicz R, Jabaoński A, Trzybiński D, Woźniak K, Šakić D, Vrček V, Long NJ, Albrecht T, Kowalski Ket al., 2019,

    Gold-Induced Desulfurization in a Bis(ferrocenyl) Alkane Dithiol

    , Organometallics, ISSN: 0276-7333

    © 2019 American Chemical Society. Thiol-modified ferrocenes on gold have been archetypical model systems for many fundamental charge transfer and other studies, since both thiol-gold and ferrocene redox chemistry are considered to be well-understood. Thus unexpectedly, we found that for a representative of a new class of flexibly linked bis-ferrocenyl compounds, namely, 1-10-bis(1-ferrocenyl)decane dithiol, surface immobilization on gold failed. Instead, in the presence of gold, molecular decomposition took place, resulting in sulfur-based adlayers and well-defined molecular elimination products, for which we provide spectroscopic evidence. Careful control experiments and comparison with related ferrocene compounds provide insight into the mechanism of the observed elimination reactions, as a combined effect of the molecular structure and the nature of the gold/sulfur bond. These findings, thus, have a broader impact on the design of molecular adlayers, for example, in the context of surface functionalization in sensing or the synthesis of gold nanoparticles.

  • Conference paper
    Leber R, Wilson L, Robaschik P, Inkpen M, Payne D, Long N, Albrecht T, Hirjibehedin C, Heutz Set al., 2019,

    Vacuum deposition of biferrocene thin films: growth strategies for stability and tuneable magnetism

    , 257th National Meeting of the American-Chemical-Society (ACS), Publisher: AMER CHEMICAL SOC, ISSN: 0065-7727
  • Journal article
    Clough TJ, Jiang L, Wong K-L, Long NJet al., 2019,

    Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents

    , NATURE COMMUNICATIONS, Vol: 10, ISSN: 2041-1723
  • Conference paper
    Leow CH, Braga M, Bush NL, Stanziola A, Shah A, Hernández-Gil J, Long NJ, Aboagye EO, Bamber JC, Tang MXet al., 2019,

    Contrast vs non-contrast enhanced microvascular imaging using acoustic sub-aperture processing (ASAP): in vivo demonstration

    , IEEE International Ultrasonics Symposium, IUS. 2018, Publisher: IEEE, ISSN: 1948-5719

    Angiogenesis plays a vital role in the progression of cancer. Non-invasive imaging techniques capable of assessing the microenvironment are therefore of clinical interest. Although highly sensitive vascular mapping has been demonstrated using ultrafast Power Doppler (PD), the detectability of microvasculature from the background noise may be hindered by the low signal-to-noise ratio (SNR) in deeper region and without the use of contrast agents. We recently developed acoustic sub-aperture processing (ASAP) processing for super-contrast vasculature imaging. This technique relies on the spatial coherence of the backscattered echoes over different acquisitions to substantially reduce the noise floor compared to the power Doppler (PD) technique. In this study, we demonstrate the feasibility of applying ASAP processing for non-contrast enhanced microvascular imaging in preclinical condition, and compare it with contrast enhanced ASAP as well as ultrafast PD. Comparing to PD, ASAP exhibit SNR improvement up to 12 dB. Higher SNR and extra visibility of smaller vessel are also demonstrated in contrast enhanced images in comparison to the non-contrast images. In conclusion, we have demonstrated the feasibility of using ASAP in vivo for non-contrast microvascular imaging, and the added benefit of using contrast agents in microvascular imaging.

  • Conference paper
    Hau Leow C, Bush NL, Stanziola A, Braga M, Shah A, Hemández-Gil J, Long NJ, Aboagye EO, Bamber JC, Tang MXet al., 2019,

    High-contrast 3D in vivo microvascular imaging using scanning 2D ultrasound and acoutic sub-aperture processing (ASAP)

    , IEEE International Ultrasonics Symposium, IUS. 2018, Publisher: IEEE, ISSN: 1948-5719

    Non-invasive techniques for microvascular environment assessment are invaluable for clinical diagnosis and treatment monitoring. We recently developed a super contrast processing to suppress noise background in ultrafast Power Doppler, known an acoustic sub-aperture processing (ASAP), and demonstrate using 2D contrast enhance ultrasound. However, 2D imaging is insufficient to represent the 3D complex vascular environment. We therefore extend our study to demonstrate the feasibility of our technique for volumetric imaging. A pseudo-3D imaging technique was developed and demonstrated using a research system and preclinical transducer. A mouse liver was scanned using 2D ultrafast ultrasound and a mechanical translation stage. Initial results not only demonstrated a substantial noise reduction in 2D vascular images using ASAP, but also a high contrast volumetric rendering of a mouse liver. Our technique is ready for clinical use to provide better evaluation of angiogenesis.

  • Journal article
    Jantan KA, McArdle J, Mognon L, Fiorini V, Wilkinson LA, White AJP, Stagni S, Long NJ, Wilton-Ely Jet al., 2019,

    Heteromultimetallic compounds based on polyfunctional carboxylate linkers

    , New Journal of Chemistry, Vol: 43, Pages: 3199-3207, ISSN: 1144-0546

    A series of homo- and hetero-nuclear, bi- and trimetallic compounds are accessible using polyfunctional linkers with carboxylic acid and alkynyl or pyridyl donor combinations. This versatile approach affords reaction at a specific donor site in each case, to accommodate both ruthenium(II) or osmium(II) units and also rhenium and gold centres. Due to the orientation of the nitrogen donors of the bipyridyl moiety in 2,2′-bipyridine-4,4′-dicarboxylic acid, the metal addition must be performed in a certain sequence due to steric considerations. One example was investigated crystallographically to add to the spectroscopic and analytical characterisation performed for all complexes. Photophysical investigations reveal the effect of incorporating second or third row transition metal centres. This approach was expanded through the use of a linker bearing both carboxylic acid and alkynyl functionalities, 1,1′-ethynylferrocene carboxylic acid. This allows initial coordination of the carboxylate donors to be followed by the formation of either an acetylide or a vinyl bridge to another metal, providing access to heterotrimetallic (FeRuOs and FeRuAu) compounds as well as a heteroheptametallic Fe3Ru2Au2 example. Preliminary electrochemical studies were performed on the latter compound.

  • Journal article
    Mann PB, McGregor IJ, Bourke S, Burkitt-Gray M, Fairclough S, Ma MT, Hogarth G, Thanou M, Long N, Green Met al., 2019,

    An atom efficient, single-source precursor route to plasmonic CuS nanocrystals

    , NANOSCALE ADVANCES, Vol: 1, Pages: 522-526, ISSN: 2516-0230
  • Journal article
    Rains JGD, ODonnelly K, Oliver T, Woscholski R, Long NJ, Barter LMCet al., 2019,

    Bicarbonate inhibition of carbonic anhydrase mimics hinders catalytic efficiency: Elucidating the mechanism and gaining insight toward improving speed and efficiency

    , ACS Catalysis, Vol: 9, Pages: 1353-1365, ISSN: 2155-5435

    Carbonic anhydrase (CA) mimics are often studied with a focus on the hydration of CO2 for atmospheric carbon capture. Consequently, the reverse reaction (dehydration of HCO3–) has received minimal attention, so much so that the rate-limiting step of the dehydration reaction in CA mimics is currently unknown. The rate-limiting step of the hydration reaction is reported to be the bicarbonate-bound intermediate step, and thus is susceptible to product inhibition. It is not, however, clear if this inhibition is a consequence of an increase in the rate of the competing dehydration reaction or resulting from the strong affinity of bicarbonate to the mimic. To address this, insight into the dehydration reaction kinetics is needed. We therefore report the most comprehensive study of a CA mimic to date. The dehydration profile of the fastest small-molecule CA mimic, ZnL1S, was characterized, and consequently evidence for the rate-limiting step for the dehydration reaction was seen to be the bicarbonate-bound intermediate step, much like the hydration reaction. This experimental validation of the rate-limiting step was achieved through a variety of methods including NMR experiments and the effect of inhibitors, substrate concentration, and metal center on activity. With this understanding, an improvement in the favorability of the rate-limiting step was achieved, resulting in decreased bicarbonate inhibition. Thus, an increase in the mimic’s kcat for both reactions was observed, resulting in the largest rate constants of any small-molecule CA mimic reported to date (28 093 and 579 M–1 s–1 for hydration and dehydration, respectively). Enzyme-like kcat/km values were obtained for ZnL1S (5.9 × 105 M–1 s–1 for CO2 hydration), and notably there is only a difference of 2.5 orders of magnitude from the enzyme, the closest of any CA mimic reported in the literature. The results from this work can be applied to the development and improvement

  • Journal article
    Wilkinson L, Massey E, Yue T, White A, Long Net al., 2019,

    Cyanoferrocenes as redox-active metalloligands for coordination-driven self-assembly

    , Dalton Transactions, Vol: 48, Pages: 72-78, ISSN: 1477-9234

    Ferrocene-based Lewis bases have found utility as metalloligands in a wide variety of applications. The coordination chemistry of cyanoferrocenes however, is underexplored. Herein, we describe a new synthetic protocol for the generation of cyanoferrocenes. The coordination chemistry of these metalloligands to [Cu(NCMe)4][PF6], [(PPh3)2Cu(NCMe)2][PF6] and [(dppf)Cu(NCMe)2][PF6] salts has been explored, providing crystallographic evidence of cluster and polymeric forms of 1,1′- and 1,2-dicyanoferrocene complexes. The stability of the complexes and ligand dissociation were found to be strongly solvent-dependent.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=242&limit=15&resgrpMemberPubs=true&resgrpMemberPubs=true&page=6&respub-action=search.html Current Millis: 1763384898556 Current Time: Mon Nov 17 13:08:18 GMT 2025

Contact

Professor Nick Long
Email: n.long@imperial.ac.uk
Telephone: +44 (0)20 7594 5781

Location

501J
Molecular Sciences Research Hub
White City Campus

Download Nick Long's CV [PDF, 0.4MB]