Miss the comfort of reading in natural light?

Our HD Light brings daylight indoors. It uses Daylight Wavelength Technology™ to mimic natural light for greater reading comfort.

Offering crystal clear clarity and incredible colour rendition, a Serious Light is perfect for anyone who struggles to read small print for any length of time or who needs to see fine detail.

It will transform your visual experience.

Using Daylight Wavelength Technology™, inside every Serious Light are the latest special purpose purple LEDs, patented phosphors and bespoke electronics. The end result is a powerful light beam that closely matches natural daylight, something our eyes find most comfortable to read and work by.

When combined with the ability to adjust the beam width, dimming facility and fully flexible arm, a Serious Light enables you to enjoy reading again in complete comfort and see colours like never before.

For Advice. For a Brochure. To Order: 0800 085 1088 seriousreaders.com/8721
Empower today’s researchers to tackle tomorrow’s challenges

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When St Mary’s Medical School alumna Dr Jean Alero Thomas sadly passed away in 2019, she left a legacy gift to set up a research Scholarship for students in the Faculty of Medicine.

Eleanor Sabey is a Research Postgraduate in the Department of Metabolism, Digestion and Reproduction. In 2021, she was awarded the Dr Jean Alero Thomas Scholarship to study for an MRes in Biomedical Research.

Eleanor grew up in a town near Gatwick with her mum who was an NHS dietitian. She says, “at secondary school, classroom disruption was abundant and resources were few and far between. This made me more grateful for access to outstanding facilities and equipment once I reached university. My family always taught me to appreciate the value of education, therefore they were very excited when I told them I would be studying at Imperial.”

It has furthered my personal independence and allowed me to meet a vast range of people. This has made my time at Imperial so much more immersive. When I received the support, I was elated, relieved, and felt more confident in my ability to pursue a career in STEM. This gift has given me access to an excellent education, opportunities and a promising career in the future.”

Eleanor plans to continue pursuing a career in biomedical research and hopes to study for a PhD in the future.

Eleanor, MRes in Biomedical Research

Power future breakthroughs – leave a gift in your will to Imperial

A gift in your will can give future generations of students and researchers like Eleanor the chance to thrive at Imperial and beyond. You’ll also be playing your part in research breakthroughs that tackle tomorrow’s biggest global challenges, such as future health threats or the climate crisis.

For more information on leaving a gift in your will, get in touch with Anna Wall, Head of Regular Giving and Legacy Giving, on +44 (0)20 7594 3801 or email a.wall@imperial.ac.uk

www.imperial.ac.uk/legacy-giving

When St Mary’s Medical School alumna Dr Jean Alero Thomas sadly passed away in 2019, she left a legacy gift to set up a research Scholarship for students in the Faculty of Medicine.

Eleanor Sabey is a Research Postgraduate in the Department of Metabolism, Digestion and Reproduction. In 2021, she was awarded the Dr Jean Alero Thomas Scholarship to study for an MRes in Biomedical Research.

Eleanor grew up in a town near Gatwick with her mum who was an NHS dietitian. She says, “at secondary school, classroom disruption was abundant and resources were few and far between. This made me more grateful for access to outstanding facilities and equipment once I reached university. My family always taught me to appreciate the value of education, therefore they were very excited when I told them I would be studying at Imperial.”

It has furthered my personal independence and allowed me to meet a vast range of people. This has made my time at Imperial so much more immersive. When I received the support, I was elated, relieved, and felt more confident in my ability to pursue a career in STEM. This gift has given me access to an excellent education, opportunities and a promising career in the future.”

Eleanor plans to continue pursuing a career in biomedical research and hopes to study for a PhD in the future.

Eleanor, MRes in Biomedical Research

Power future breakthroughs – leave a gift in your will to Imperial

A gift in your will can give future generations of students and researchers like Eleanor the chance to thrive at Imperial and beyond. You’ll also be playing your part in research breakthroughs that tackle tomorrow’s biggest global challenges, such as future health threats or the climate crisis.

For more information on leaving a gift in your will, get in touch with Anna Wall, Head of Regular Giving and Legacy Giving, on +44 (0)20 7594 3801 or email a.wall@imperial.ac.uk

www.imperial.ac.uk/legacy-giving

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.

When you leave a gift in your will to Imperial, you can help talented researchers like Eleanor tackle our future challenges.
Abdus Salam Library named

Imperial’s Central Library has been renamed the Abdus Salam Library in recognition of the Nobel Prize-winning Professor of Theoretical Physics, with a formal launch in the new year.

The decision to honour Professor Salam’s extraordinary work is part of a wider response to last year’s History Report, which recommended identifying people whose achievements have never been sufficiently recognised or celebrated by the university. It aims to make them visible physically on the university’s campuses, through renaming, portraiture or via scholarships.

Professor Hugh Brady, President of Imperial, says: “Professor Salam made a tremendous contribution to Imperial, as well as to the world of physics and science more generally. It is right that we do more to celebrate this legacy. I hope the new Abdus Salam Library inspires many more people in the years to come.”

Reflections on AstroSoc

Reading about AstroSoc (Imperial 56) reminded me of time spent on the Blackett Laboratory roof, with what looks very much like the same telescope during April-May 1983, in my first year Physics project.

We were taking pictures of the sun, with a 99.9% reflecting filter on the front of the telescope, using ultra-slow black and white film in an old Soviet Zenith SLR camera. The aim was to use the movement of sunspots on the sun’s surface to estimate the rotation period of the sun.

It was surprisingly hard to spot the sun and I think the clouds only parted for four or five days, but the data collected was enough to get a reasonable estimate. I remember, after several difficult calculations using a rudimentary homemade radio telescope, my friend worked out that he had located the sun—which I enjoyed pointing out to him on a rare cloud-free day.

Since leaving Imperial, I qualified as a physics teacher, a fabulous job that has taken me all over the world, as a physics teacher, a fabulous job which I enjoyed pointing out to him on a rare cloud-free day.

Neil Hodgson
Physics 1983

Correction and clarifications

In Issue 54 (Trailblazers), we said that Carolyn Hansson studied at the “Royal College of Mines”. Of course, as many of you emailed to tell us, this should have been the Royal School of Mines.

And from Imperial on X....

“Have been awarded Gold in the 2023 Teaching Excellence Framework (TEF) in recognition of our quality of teaching.”

This would not be possible without our community, who through innovation and support, have transformed Imperial’s educational experience.

It’s finally here... Commemoration Day 2023! Have fun, take lots of photos, and celebrate – today is your day. We wish you every success as you embark on a future filled with endless possibilities.

Welcome to Nicola Pogson

This autumn, Nicola Pogson, Director of Alumni Relations, retired after 17 years of service at Imperial. During her time here, Nicola helped to nurture the vibrant and welcoming alumni community we know today, including through this magazine.

She instigated the launch of Imperial’s Alumni Awards, overseeing more than 1,244 alumni events (with more than 20,000 attendees), and through the Alumni Visitor Centre, welcomed more than 37,000 alumni visitors back to campus.

She has been a tireless advocate for alumni at Imperial, and has always gone the extra mile to make sure that they feel valued and appreciated. She will be missed by her colleagues and the alumni community alike.

We hope she continues to enjoy reading the magazine in retirement and look forward to her visits here on campus.

Michael Murphy
Vice President (Advancement)

WRITE TO US

Letters

Join the debate and share your news and views.

Letters the debate and share your news and views.

ISSUE 55 - WINTER 2023/24
FROM THE PRESIDENT / PROFESSOR HUGH BRADY

Excellence, commitment and ambition – we have a lot to be proud of

Imperial College Healthcare NHS Trust and Imperial College London have launched an appeal, with Prince William as its patron, to build a centre devoted to tackling antimicrobial resistance. Named the Fleming Centre, it will be based at St Mary’s Hospital in London – where Sir Alexander Fleming discovered penicillin a century ago.

Antimicrobial resistance is an urgent global threat that already kills around a million people every year – and could lead to ten million deaths a year by 2050 if no solution is found.

Evidence and co-design will be at the heart of the Centre, says Professor the Lord Darzi of Denham, Chair of the Fleming Initiative. “We’re making behavioural science and public involvement the cornerstones of the radical change that’s needed to influence individual behaviour and policy decisions.”

We’re making behavioural science and public involvement the cornerstones of the radical change needed

addle your own text here

UK’s first womb transplant

A team co-led by Imperial Professor Richard Smith has performed the UK’s first womb transplant. Both the woman who received the womb and her donor are recovering well.

The operation has given the recipient the possibility of getting pregnant and carrying her own baby. She is one of the one in 5,000 women in the UK who are born without a viable womb and are unable to conceive and carry their own child. Many other women have had to have their womb removed following illness.

Professor Smith (below), who is based at Imperial’s National Heart and Lung Institute, paid tribute to the donor. “This is only possible thanks to the recipient’s sister, who came forward and was willing to donate.” All being well, the recipient will undergo an embryo transfer later this year.

Our dedicated community seeks to answer some of the world’s toughest questions

Imperial is a future-focused university looking to solve the major challenges facing humanity and our planet. Our overarching ambition is to build on Imperial’s past achievements and impressive current international positioning to realise our full potential as a force for good in the UK and wider world.

Imperial’s star is rising without precedent, and we have a powerful story to tell the world as we launch our ambitious long-term strategy in the first quarter of 2024. ◆

> Professor Hugh Brady is President of Imperial College London.

The Hitchhiker’s Guide to the Galaxy says 42 is the answer. But what is the question? For Dr Chris Timmermann, it is: Can psychedelic compounds help us better understand the human mind?

The next few years have seen increased interest in using psychedelic drugs to treat conditions such as PTSD, anxiety and depression. But if these drugs are to be effective, says Dr Chris Timmermann (PhD Brain Sciences 2020), we must first answer fundamental questions about how they work.

Timmermann’s DMT Research Group examines the effects of dimethyltryptamine (DMT) – a hallucinogenic drug that induces highly vivid, visual worlds in which people feel they are in an alternative universe, dimension or reality. “We found that DMT disrupts the systems and networks in our brains related to the way we interpret the world,” says Timmermann. “By finding out how to reconstruct these networks, we can potentially work out how to build new ones.”

Researchers no longer see the brain as a passive receiver of the external world, he points out. “In fact, our brain constructs narratives – for example, our sense of self and identity, the stories we tell ourselves about ourselves. We can think of depression, for example, as harmful narratives that have become crystallised over the years.”

Psychedelics are capable of radically altering those narratives. So when we learn about these things, we also understand better how we can develop further tools with psychedelics to help people with depression, anxiety or PTSD, or potentially increase wellbeing in already healthy people.

Timmermann will investigate a similar compound, 5-MeO-DMT, found in the venom of Bufo ovinus, the Colorado River toad. The drug is reported to ‘deeply’ affect the brain. “It can disturb the system so that people just have an experience of being alive and nothing else,” he says. “So it could allow us to understand what are the minimal requirements in the brain for us to have an experience at all.”

>Dr Chris Timmermann is a Research Associate at the Centre for Psychedelic Research.
As a professional magician, Dr Will Houstoun is used to people thinking that he’s in the entertainment business. “People often think that magic can only be trivial light entertainment,” says Houstoun, Magician in Residence at Imperial. “Being able to show that there is a depth to it, and that it’s something that can inform very different practices in a beneficial way, feels really exciting to me.”

Houstoun – who fell in love with magic as a child – originally pursued a ‘proper’ career, studying for a degree in mechanical engineering. “At the end of my degree, I decided that I liked magic more than engineering.” He later completed a PhD on the use of magic as an educational tool in the Victorian period. “All of the work that I now do flows out of the idea of using magic as a tool to achieve something other than mere entertainment,” he says.

For the past decade, Houstoun has been working with Imperial’s Professor of Surgical Education, Roger Kneebone, to explore the intersection between magic and medicine. The starting point? Both magicians and surgeons practise a complex, technical and dexterous skill. But over the course of their collaboration, a more significant parallel has emerged: that of interaction with an audience, whether that’s somebody watching a magic trick or a patient in a medical consultation.

In fact, magic performances and medical consultations often have a similar dynamic. “One kind of magic is done close up, for one or two people. There’s a massive power imbalance because you know how the trick is done and your audience doesn’t. To engage meaningfully you have to quickly build rapport and let them know that magic will be a safe and fun experience.” Likewise, in a five-minute consultation, a GP needs to build trust with their patient and build a connection quickly to generate the best outcomes.

The doctor-patient relationship is a vital part of being a GP, but one that can be challenging to teach. Students need to realise that having all the required medical knowledge is only part of the equation – just as, in magic, knowing the secret of the trick is just one part that must be supported by being able to perform in a way that everyone can enjoy. Houstoun and Kneebone run sessions where students learn to perform a magic trick for an audience, then think about what they can take away from the experience and put into a medical context. “It allows people to make discoveries about the way they interact in a playful environment,” says Houstoun.

As well as his work at Imperial, Houstoun also works with Breathe Arts Health Research, an organisation that uses magic to help young people with hemiplegia, a condition that causes a partial paralysis on one side of the body and issues with fine motor skills and co-ordination. “They come for a ten-day magic programme, and each trick they learn includes actions that will help them in day-to-day life. For example, they might practice a trick that involves picking up things with their first finger and thumb, which translates into being able to do up buttons on a shirt.”

When he’s not working in the medical sphere, Houstoun also uses magic to help film, TV and theatre practitioners tell stories. He developed the magic for Martin Scorsese’s Hugo, taught Mark Rylance to perform a card trick for BBC1’s Wolf Hall and is co-designing the magic for the National Theatre’s production of Roald Dahl’s The Witches.

“There are always interesting problems to solve in my job. One day it might be helping students to think about the importance of doctor/patient interaction, the next it might be working out how to change children into mice onstage.”

Performing magic and medicine has similar dynamics – although the practitioner holds all the power, without trust neither works properly.

Dr Will Houstoun is Imperial’s Magician in Residence.
A Whole New World
Of Logic Puzzles!

30 Cubed has been based on mathematical principles that have challenged generations of mathematicians. This amazing set contains 30 different cubes, plus a 4 x 4 gift and a puzzle solution booklet. Each cube features the same six base colours and ten different colours varies from cube to cube. Every side on every cube also features part of a ‘line’. The lines appear in ten different colours. The puzzles all require the lines and/or base colours to be connected in different ways, following increasingly complex rules.

The 45 multi-level challenges, including 18 junior puzzles, represent just a start of what can be achieved. The 45 multi-level challenges, including 18 junior complex rules.

The Story Of 30 Cubed

Moscovich sent the creation on to Scientific American magazine, where his report on the ‘30 Colour cube’ capture the interest of readers. The main reason was that the solution to the 30 Colour cube was found by a simple mathematician named Martin Gardner, a world-famous mathematician and science writer. Gardner, who responded by writing an article in ‘Scientific American’ magazine, expressing his regret that the ‘30 colour cube’ was never accepted. And then on the day of the deadline, I couldn’t sleep at all – I woke up at 3am, finished the application, sent it off and went back to bed. The same day they sent me an interview offer.

I’m now just over a year into the 18-month scheme, a blend of practical on the job experience and studying, and I couldn’t be happier. I’m heavily involved in designing, building and deploying websites and apps, and recently I am one of the main developers on a project to build a new website for Imperial’s Summer School. It’s so exciting to know that people will be interacting with my work even if they don’t know who’s behind the building of the app or website.

It means I have to spend time thinking about what the perspective of the children using these products is like, and it’s pretty cool to know that what I’m creating is going to be part of their educational journey.

Sometimes seeing my friends who live away from my computer and into the outdoors – but with a few more added responsibilities. The sports are fun but I really value the chance to meet other

Imperial people outside of the campus and maintain friendships that way too.

There are so many different communities – I’m quite mixed in with them all and I’ve made so many friends on campus, including students as well as other staff.

Also, obviously I have the benefit of studying in a university environment while being paid for it. This gives me a lot more reassurance about my future, as it means I can build something financially comfortable from the beginning of my career.

When I do think about what it would have been like to go to university,

I’m still doing the university experience – but with added responsibilities

it’s the financial part that reminds me that I made the right decision.

The apprenticeship programme I’m doing is fairly new and I’ve had to explain how it works to many people, but everyone has been really open to the idea that you don’t have to follow a conventional academic path and there are other avenues you can take on your educational journey. That’s a key message, and I’d urge others to explore the options.

Initially apprenticeships were never really in the foreground for me, but when I started exploring what career options there were, I quickly realised that gaining experience alongside the learning was the most viable option for me. And the apprenticeship has also changed the way I approach life in general. Every time I hesitate, I remember that I got this opportunity and so I don’t have to try and put my name forward for something else. Amazing things have happened, and I hope that doesn’t stop any time soon.

I’m still doing the university experience – but with added responsibilities
Under the surface

Volcanologist Professor Sir Stephen Sparks says technology is a brilliant help, but he still can’t do without just two simple tools.

Interview: Helen O’Hara

The technology around monitoring volcanoes has developed significantly over the years I’ve been studying them, but there are two simple things I can’t do without: a hammer and a hand lens. Seismometers, GPS and all sorts of wonderful instruments are brilliant, but I’m a geologist, so I’m always collecting rocks and looking at minerals, which I take back to the lab and analyse.

For example, when I was doing research on the Soufrière Hills volcano in Montserrat, I found that by looking at the mineralogy of the lava and the rocks it reacted with, I could infer the conditions of the eruption and try to forecast when the next one might happen.

I got my first hammer when I was a child – I remember breaking rocks as a small boy. I always collected rocks and looked at them, and I’m still doing it now as a senior scientist. Seismometers, GPS and other instruments are crucial, but they’re not enough on their own. You need a hammer and a hand lens to understand the processes that are happening.

I’ve always been fascinated by volcanoes, particularly those in the South Atlantic and the Caribbean. I’ve worked on the Soufrière Hills in Montserrat, which is one of the most active volcanoes in the world, and I’ve also studied volcanoes in Iceland, Argentina, Japan and Chile. I love the variety – there’s always something new to learn.

But I’ve always built in fieldwork, and I have always had the chance to go out on the volcano and see what’s happening. I’ve been involved in a number of projects that have involved going on active volcanoes, such as the Soufrière Hills in Montserrat, and I’ve been able to use the technology and instruments that are available to me to help predict future eruptions.

Fieldwork is crucial – you can’t do it all from the lab. I’ve been involved in a number of projects that have involved going on active volcanoes, such as the Soufrière Hills in Montserrat, and I’ve been able to use the technology and instruments that are available to me to help predict future eruptions.

I’ve always enjoyed the challenge of working on active volcanoes, and I’ve always tried to find ways to improve the technology and instruments that are available to me to help predict future eruptions.

I’ve always been fascinated by volcanoes, particularly those in the South Atlantic and the Caribbean. I’ve worked on the Soufrière Hills in Montserrat, which is one of the most active volcanoes in the world, and I’ve also studied volcanoes in Iceland, Argentina, Japan and Chile. I love the variety – there’s always something new to learn.

But I’ve always built in fieldwork, and I have always had the chance to go out on the volcano and see what’s happening. I’ve been involved in a number of projects that have involved going on active volcanoes, such as the Soufrière Hills in Montserrat, and I’ve been able to use the technology and instruments that are available to me to help predict future eruptions.

Fieldwork is crucial – you can’t do it all from the lab. I’ve been involved in a number of projects that have involved going on active volcanoes, such as the Soufrière Hills in Montserrat, and I’ve been able to use the technology and instruments that are available to me to help predict future eruptions.

I’ve always enjoyed the challenge of working on active volcanoes, and I’ve always tried to find ways to improve the technology and instruments that are available to me to help predict future eruptions.

I’ve always been fascinated by volcanoes, particularly those in the South Atlantic and the Caribbean. I’ve worked on the Soufrière Hills in Montserrat, which is one of the most active volcanoes in the world, and I’ve also studied volcanoes in Iceland, Argentina, Japan and Chile. I love the variety – there’s always something new to learn.

But I’ve always built in fieldwork, and I have always had the chance to go out on the volcano and see what’s happening. I’ve been involved in a number of projects that have involved going on active volcanoes, such as the Soufrière Hills in Montserrat, and I’ve been able to use the technology and instruments that are available to me to help predict future eruptions.

Fieldwork is crucial – you can’t do it all from the lab. I’ve been involved in a number of projects that have involved going on active volcanoes, such as the Soufrière Hills in Montserrat, and I’ve been able to use the technology and instruments that are available to me to help predict future eruptions.
As a world-leading university, but also the UK’s only specialist university in science and technology, our success relies on our ability to attract the very best people to work and study here,” says Professor Peter Haynes, Vice-Provost (Education and Student Experience). “That’s why we offer opportunities to talented students from all backgrounds — whether that’s students in the UK who come from under-represented communities, international students who excel in their field but may not have the funds to study here, or students from displaced communities. We spend more than £10 million a year on our Imperial Bursary for UK undergraduates alone, and have numerous other schemes for both undergraduates and postgraduates from all over the world.”

The life-changing chance to study at Imperial is, of course, the central reason why scholars come here. But scholarships and bursaries allow them to do so much more. “They can experience London and all its opportunities, and play a vital role in the life of Imperial,” says Haynes. “We don’t want them to have to work alongside their studies, and while they enrich their lives, they in turn enrich university life. Our message is simple: if you are the brightest and best, we want you at Imperial, no matter where you come from.” These are their stories.

A doctor who left school aged just nine. A mathematician determined to continue her work against the backdrop of a brutal war. A design engineer longing to gather the world’s expertise. And a neuroscientist trying to unlock the secrets of dementia on a laptop so old it’s falling apart. What do they have in common? All of them want to change the world — and none of them would be at Imperial had it not been for a scholarship or bursary.

Words Lucy Jolin / Photography Dunja Opalko

“As a world-leading university, but also the UK’s only specialist university in science and technology, our success relies on our ability to attract the very best people to work and study here,” says Professor Peter Haynes, Vice-Provost (Education and Student Experience). “That’s why we offer opportunities to talented students from all backgrounds — whether that’s students in the UK who come from under-represented communities, international students who excel in their field but may not have the funds to study here, or students from displaced communities. We spend more than £10 million a year on our Imperial Bursary for UK undergraduates alone, and have numerous other schemes for both undergraduates and postgraduates from all over the world.”

The life-changing chance to study at Imperial is, of course, the central reason why scholars come here. But scholarships and bursaries allow them to do so much more. “They can experience London and all its opportunities, and play a vital role in the life of Imperial,” says Haynes. “We don’t want them to have to work alongside their studies, and while they enrich their lives, they in turn enrich university life. Our message is simple: if you are the brightest and best, we want you at Imperial, no matter where you come from.” These are their stories.
LAURENCE GESMAN
(Medicine, Third Year)

I was 14 – and hadn’t been to school since I was nine – when I decided I wanted to become a doctor. I became fascinated with the Ebola epidemic and read everything I could find about it. But I was living with my father, who had not taken good care of me. I had no qualifications and no education.

Three years later, when I was 17, I left my father and went into care. But I was still determined to follow a career in medicine. Throughout all the adversity and disadvantage I faced, that dream was what drove me on. I went to sixth form college and took the GCSEs I needed, then the A-levels. It was hard work.

When I got the offer from Imperial, it made all the effort worth it – but being awarded the Imperial Bursary made it possible.

As a care leaver, I receive £5,000 a year – the UK’s most generous bursary. Having the bursary has meant, for example, that I can join the rowing team – the first time I’ve ever been able to join a sports team in my life. It’s helped me with housing costs, so I didn’t have to work so much over the summer. So having the bursary has been very important to me.

The more I study, and the more clinical exposure I get, the more I know that medicine is what I want to do. I’ve never made friends like the friends I’ve made on my course. I’m in such a great place with my life, thanks to doing medicine with people who have similar ambitions, and who want to do good things in the world. Right now, I’m considering going into oncology and cancer research – but that may change, as I’m discovering new things every day!

Bursaries like this are so important, as they open up the medical profession to people like me. But, of course, the Imperial Bursary isn’t just for medics, it’s for any student at Imperial who fits the criteria. It means we can be part of this ambitious, visionary community – and we can worry a lot less and do a lot more.

RASIN WURIE
(MSc Applied Biosciences and Biotechnology 2023)

I’ve always been fascinated by the brain, the nervous system, and understanding the biological functions that make us who we are. That’s why I chose to study neuroscience at the University of St Andrews in Scotland where I became interested in neurodegeneration, and especially how it can affect so many different parts of the nervous system, from memory to movement. That led me to the exciting emerging fields of bioinformatics and synthetic biology – and to Imperial’s DeepMind Scholarship.

When I heard that I had won the scholarship, I just felt ecstatic, because knowing that I could just focus on the science was amazing. I had to work part-time throughout my undergraduate degree and had just enough to cover my rent and basic living costs. Knowing that I wouldn’t have to worry, and could just focus on the science and my studies, was an amazing relief.

The scholarship not only covers the full course and living costs, but also support for equipment – my ancient laptop was literally falling apart – and conference attendance. I was able to attend the British Neuroscience Association’s conference in Brighton, which was fantastic; it gave me the chance to network with leading figures in neuroscience and learn more about advances in the field.

Plus, it was inspiring seeing just how science happens and is communicated.

What I’ve loved most about my Imperial experience is engaging with people from different backgrounds and scientific disciplines and seeing how they approach a problem. I’m passionate about how interdisciplinary research can be used to advance science. In the future, I want to do a PhD exploring the genetic basis of neural degeneration, looking at understanding the causes and progression or identifying targets for treatments. And beyond that? Perhaps to go further into the question of whether ageing is a natural process or a form of disease. But above all, I want to do solid, useful research that will help improve lives.
OKSANA VERTSIMAKHA
(MSc Statistics 2023)

I took my undergraduate and Master’s degrees in Mathematics and Statistics at the Taras Shevchenko National University of Kyiv. But I really wanted to pursue my academic career and study abroad. I was eager to experience an international scientific community and international-level research. So I applied to Imperial to do a second Master’s, and was accepted.

Then the war broke out. It was a very hard decision to continue studying, but I believed that as a researcher I would still be able to make the most of my abilities and life. It was already difficult arranging to study abroad; there were many administrative issues. But now, I couldn’t even get a student visa, as there were no visa centres operating in Ukraine. I just kept looking for a way and hoping. Luckily, I was accepted on to the British government’s Ukrainian sponsorship scheme, which allowed me to come to the UK, and I was awarded Imperial’s Sanctuary Scholarship — it felt like a miracle.

I have loved studying at Imperial. It has been fantastic to see such a high level of research going on, and to meet so many people involved in pandemic studies and biomedical research. But, of course, it has been a stressful year for me. Being able to live in London and not having to work in order to keep afloat has been wonderful. And I have had the opportunity to sing in the Imperial choir, volunteer, and to explore this great city. Having the Sanctuary Scholarship has been very reassuring for me in very difficult times.

Now, I have been offered an academic scholarship. I am about to start my PhD at Imperial, and I’m so excited about staying connected to the College in the future. I’m hoping to stay in academia, focusing on biomedical or environmental statistics. I am so grateful to those exceptionally kind people who donate to scholarships such as Sanctuary, who make it possible for people like me to contribute to scientific research.

CASSANDRA SEAH
(PhD Design Engineering, Fourth Year)

When my beloved grandpa was diagnosed with dementia, I wanted to do something to help him. I was studying Product Design at Nanyang Technological University in Singapore, and doing undergraduate research on dementia games. Realising that such interventions could be improved, I set up a company to create multisensory rehabilitative games and installations aimed at enhancing the lives of seniors with dementia in nursing homes, hospitals and day care centres.

Wanting to research and develop interventions for people like my grandfather, I hoped to study at Imperial. However, it was extremely expensive, but my dream was realised when I was awarded the President’s PhD Scholarship.

I realised that mindfulness could bring benefits to both the caregiver and the person with dementia, and I wanted to bring them some form of comfort and reduce their stress and worries. As both go through each stage of the disease, it is demoralising on the emotional, intellectual and physical level, with more challenging and extremely stressful, uncertain situations to cope with.

So for my PhD, I’ve developed innovative interventions, using conversational agents such as Alexa to bring mindfulness to dementia patients and their caregivers. I have worked alongside them for the past four years, and developed five mindfulness activities, carefully designed to consider context, difficulty level, duration, tone, flow and resulting experience.

It’s been an eye-opening experience to be exposed to so many different cultures and, at the same time, find so many like-minded people to connect with. I made so many close and dear friends who I speak to every day, even though I’m now back in Singapore. Without the President’s Scholarship, I would not have had the opportunity to go deeper into this work, which I believe will add to the growing field of improving the lives of persons living with dementia, and their caregivers.

YOUR SUPPORT FUELS EXCELLENCE

Imperial relies on the generosity of donors to give outstanding scholars the opportunities they deserve. Such donors include, of course, Imperial’s incredible alumni community, who continue to support Imperial long after graduating. We work closely with donors to find the best and most effective ways to use your gifts to provide life-changing opportunities for students and enable them to flourish at Imperial. If you are interested in donating to an Imperial scholarship or the Imperial Bursary, please contact Anna Wall (giving@imperial.ac.uk) to find out more.
Agents of change

CATALYSTS ARE ONE OF CHEMISTRY’S MINOR MIRACLES: SAME RESULTS IN HALF THE TIME. BUT COULD THEY ALSO BE THE KEY TO OUR FUTURE SUSTAINABILITY?

When Professor James Wilton-Ely (Chemistry 1994, PhD 1998) ran an experiment on catalysts recently, he started on eBay. There, his team bought an assortment of old phone SIM cards. They were cheap, with 50 cards costing around £1.30. Yet for Wilton-Ely’s purpose, they were invaluable.

“That shiny golden contact button on every SIM card has a very high gold content,” says the Professor of Inorganic Chemistry at Imperial. The team ground up the cards, separated out the plastic and extracted the gold using an environmentally friendly organic compound containing sulfur. The result was not pure gold, but a gold compound.

Then, they tested the recovered gold in reactions that the pharmaceutical industry uses to manufacture drugs such as anti-inflammatory and pain relief medications. “To our surprise, the compound turned out to be a very effective catalyst for a whole host of important reactions without needing any further transformations,” says Wilton-Ely.

Catalysts – from the Greek καταλύειν, meaning ‘loosen’ – are the hidden miracle workers of science. Simply put, they are substances – often metals – that jump-start chemical reactions. In ways that even scientists don’t always fully understand, a catalyst enables other elements and compounds to form chemical bonds that would otherwise require a lot of energy or time to happen, and the catalyst itself emerges unchanged at the end.

FRESHLY MINED ELEMENTAL GOLD

Gold is an exceptionally effective catalyst, but mining 1kg of gold produces 12,500kg of carbon dioxide.

GOLD COMPOUNDS RECYCLED FROM SIM CARDS

The Imperial team extract gold from previously discarded sources, such as SIM cards, as a more sustainable alternative.

ANTI-INFLAMMATORY PAIN RELIEF MEDICINES

The resulting gold compound is used as a catalyst for reactions that could be applied to future medicines.
“It’s often said that 90 per cent of all man-made products have a catalytic step in their production,” says Professor James Wilton-Ely. Catalysts mangle inedible plant oils to form luscious margarine; they break down wood to produce paper; and they change petrochemical compounds into plastic. The human body, too, runs on catalysts – although we call them enzymes. They help us digest, breathe and move.

At Imperial, scientists, including Wilton-Ely, are now finding ways to use these chemical miracle workers to push the world towards better sustainability. They are doing so by creating innovative catalysts from waste products, by making green energy more affordable, and by using catalysts to jump-start an “artificial photosynthesis” that pulls climate-damaging carbon dioxide straight from the air.

Many of the best catalysts are rare metals such as palladium, rhodium and gold. They are often only found in certain parts of the world, such as Russia, making supply chains problematic. Mining these metals tends to heavily damage the environment, leaching toxins into the soil and climate-changing gases into the air. “The mining of one kilogram of gold produces 12,500kg carbon dioxide,” says Wilton-Ely. “This is particularly troubling since the world has already mined vast amounts of these metals – only to carelessly throw them away. In Europe alone, every person produces 20kg of e-waste a year – including computers, printer cartridges and phones. And the numbers keep growing, even though our old gadgets are full of precious substances. “The amount of gold found in computers is many times higher than in even the richest seams of mining,” says Wilton-Ely. “You have to process 30 to 60 tonnes of rock to find as much gold as in 20 or 30 computers.” Yet very little e-waste gets recycled.

So when one of his collaborators, Angela Serpe at the University of Cagliari in Italy, developed a low-energy process that recovered gold from e-waste using environmentally benign reagents, Wilton-Ely set out to find a use for it. Serpe’s recovery method results in a compound of gold – not elemental gold – that would cost too much energy to reuse in electronics. But the compound works as well, or even better, than catalyst derived from newly mined gold in pharmaceutical reactions, Wilton-Ely found.

His group is also working to repurpose another precious catalyst metal: palladium, which sits in the catalytic converters of vehicles and reduces harmful emissions. “Every car with a combustion engine drives around with about four grams of palladium. That’s 200 times the concentration in mined ores,” says Wilton-Ely.

But palladium, whose natural deposits are mostly located in Russia, is also an important catalyst in the manufacturing of pharmaceuticals and agricultural chemicals such as fertilisers and fungicides. And like the gold from SIM cards, the palladium compound that Wilton-Ely recovered from exhaust emission converters has proven to be “a very well-behaved catalyst,” he says. “We don’t see any difference in durability compared to metals sourced from mining. We can reuse them again and again and again.”

B

esides mining and geopolitical complexities, rare metal catalysts have another downside: they are expensive. Platinum, for example, trades at close to $1,000 per ounce. It’s used as a catalyst in hydrogen fuel cells, a sought-after form of green power, in which hydrogen gas reacts with oxygen gas to create water and electricity.

“Currently, around 60 per cent of the cost of a fuel cell is the platinum for the catalyst,” says Professor Anthony Kucernak in the Department of Chemistry. “To make fuel cells viable alternative to, for example, fossil fuel-powered vehicles, we need to bring that cost down.” Kucernak has discovered that the much more common and affordable iron can replace the platinum – provided you finesse its configuration.

Many rare metals are effective catalysts because they’re built in a way that attracts enough atoms to make them break their existing bonds with other atoms – but not so much that they will then bond with the catalyst itself. Rather, the newly freed atoms go on to react with other chemical partners. And a lot of these metals “sit in this Goldilocks zone,” says Kucernak. But he and his team have found that if they dispense iron into a single-atom structure, it acts similarly. “We started thinking about what was holding it back from being a usable catalyst. It seemed to us that we needed to modify the chemistry to allow for more active sites,” he says.

An important trick was to prevent iron atoms from forming clusters, “which aren’t really active for reactions”, so the team has developed a process called transmutation, which disperses individual iron atoms within an electrically conducting carbon matrix. Once this was achieved, the common iron started to rival platinum’s performance as a fuel cell catalyst. Kucernak’s approach resembles the way catalysts work in the human body. “The body doesn’t use rare elements for catalytic processes,” he says. “Instead, it modifies the electronic structure around much more ubiquitous metals to change the properties. It’s very similar to what we are doing.”

Ninety per cent of man-made products have a catalytic step in their production

Professor James Wilton-Ely

ISSUE 55 - WINTER 2023/24

EXPENSIVE PLATINUM

Currently, around 60 per cent of the cost of a fuel cell is the platinum for the catalyst. To make fuel cells viable alternative to, for example, fossil fuel-powered vehicles, we need to bring that cost down.

SINGLE-ATOM IRON

The Imperial team has created a catalyst using only iron, carbon and nitrogen nanomaterials that are cheaper and more readily available.

HYDROGEN FUEL CELL CAR

The cheaper catalyst has opened the deployment of significantly more renewable energy systems that use hydrogen as fuel.
Opening doors to the future

Now, Zoya can focus on developing her research skills and building her knowledge, so she can change the world for the better. “I want to assure donors to the College that the support was put to good use,” she says. “To realise my dream is something that will always be my proudest accomplishment.”

Support from Alumni like you took a huge burden off me. I was able to give my course my full attention and explore all that Imperial has to offer.”

Will you help more students like Zoya?

No one knows the life-changing impact of an imperial education better than the College community. Your support can remove financial barriers, so that students from all backgrounds can afford to come to imperial and excel, if you would like to support more students like Zoya please make a gift today using the form enclosed or online at www.imperial.ac.uk/giving/winter-magazine-23

Your gifts helped me realise my dreams

When MSc student Zoya moved from Pakistan during the pandemic, generous donations from Imperial supporters took away her financial worries so she could focus on her studies.

Growing up in Pakistan, it was Zoya’s dream to study at a top university in the UK. When her father passed away, her mum became a school teacher to make ends meet and support Zoya’s education. Zoya and her two siblings helped out by taking up jobs alongside their studies. Inspired by her father, who had a degree in health sciences, her ambition was to be a scientist. Her dream came true when she was admitted to Imperial to study an MSc in Advanced Chemical Engineering.

Yet when the pandemic hit, Zoya had to put her dreams on hold. When the day came to start her course at Imperial, she had to find money for the mandatory 10-day hotel quarantine – even though she had “barely saved up enough to survive”. It blew a hole in her savings before she had even started.

Your generosity changes lives

“I had days of extreme stress,” she says. “I was new in London with no contacts or friends, and I had the money shortage looming over my head.” She tried to figure out a way to get a part time job, but it was really difficult. Zoya’s dream hung in the balance. That’s when generous donations from Imperial alumni and supporters like you made all the difference.

Thanks to your gifts, Zoya was able to access student hardship support to cover her rent and bills so she could settle into London and her new life at Imperial free from worry. “I was very relieved,” she says. “It took a huge burden off me. I was able to give my course my full attention and explore all that Imperial has to offer.”

Will you help more students like Zoya?

No one knows the life-changing impact of an imperial education better than the College community. Your support can remove financial barriers, so that students from all backgrounds can afford to come to imperial and excel, if you would like to support more students like Zoya please make a gift today using the form enclosed or online at www.imperial.ac.uk/giving/winter-magazine-23
Midnight, early summer. Mid-1990s. Jiten Patel and three friends are testing a rumour. They’ve been told by a friend in the know that beneath the South Kensington campus lies a vast network of secret tunnels, enabling access to almost any part of the campus. And apparently there’s a way in – if you know where to look. “It seemed absurd that you could go through a hatch and walk under all the buildings, but we decided to investigate,” Patel (Physics 1999) recalls.

The group met at their designated rendezvous and waited for the coast to clear. They located the access point and entered the tunnels – grimy, dark but surprisingly spacious; filled with control panels, junction boxes and hot pipes that carried steam and water to heat the campus. While Patel focused on not getting lost, one of the group tried to record the layout into a map – but soon ran out of space. “We must have been in there for four or five hours,” he says. “At one point we found a stepladder and poked our heads out of the middle of Exhibition Road with a car coming towards us.”

Patel and his fellow explorers had discovered Imperial’s service tunnels, which although now inaccessible, date back to the 1851 Great Exhibition. Filled with wires, cables and pipes, the tunnels contain water, data, phone, security and power and extend under the entire campus and are believed to have once connected to the basements of the nearby museums. Extremely hot, the tunnels are nevertheless surprisingly well lit and tidy.

Among students in the know, myriad rumours have arisen: they were used to store radioactive waste; they were the locations for love trysts (a makeshift bed and empty bottle of wine were once discovered in one tunnel) or drinking clubs; they were protected by armed guards.

Actually, there’s the faintest ring of truth to that last claim. Alun Kimber (Chemical Engineering and Chemical Technology 1982) was a student at Imperial in 1980, when the nearby Iranian Embassy on Princes Gate was stormed by gunmen. Kimber was in his student accommodation watching the snooker in the TV lounge when it was interrupted by a live broadcast from the siege. He and friends decided to get a closer look via the tunnels, as the police had closed the conventional route onto the main road.

“You just needed to know the right door and then you were in,” he says. “We followed this guy through these musty brick tunnels and popped up very close to the back of the embassy. It was on fire as the SAS had just gone in and a policeman saw us and came running towards us telling us to get inside.” Kimber and co
joined by three new gas boilers which, along with the South Kensington campus. The generators are now being reconfigured to generate almost all the electricity needed to run the institution, with a capacity of 4.5MW. It is believed to be the biggest privately owned energy centre in the UK, capable of generating electricity through two combined heat and power engines, each of which can generate 1.2MW of electricity and 1,500 tonnes of steam per year. Caldwell is proud of the efficiency of the engines, which waste heat generated by the exhaust is captured and fed into the boilers, where it is turned into water to produce steam. He says, "We double all the costs we had to live with this thing. Steam is an amazing way of transporting heat because you don’t need to pump it, it moves itself through the pressure and you get a lot of energy down a small amount of pipe. But there are also many drawbacks. It is thermally inefficient and there are a lot of daily checks and safety measures that require compliance. There are fewer losses in a low-temperature water district heat network than a saturated steam heat network."

Now, the steam is all but gone — but the tunnels remain, used for miles of cables and pipes that carry water and electricity from Imperial’s Energy Centre around the campus. The Energy Centre is the ‘heart and lungs’ of Imperial, generating electricity through two combined heat and power generators, each of which can generate 4.3MW of electricity. Believed to be the biggest privately owned power station in London, the Energy Centre generates almost all the electricity needed to run the South Kensington campus. The generators are now being joined by three new gas boilers which, along with the removal of the steam heating network, will cost around £40 million, £12 million of which will come from a government grant. Caldwell, the Energy Manager, says, "We know what to call the project," admits Caldwell. "Some call it decarbonisation and others call it de-steaming. Technically, we call it the Removal of the Central Provision of Steam — because we want to reflect that there are some assets out there that still need steam, but it’s easier to call it de-steaming."

“We essentially operate our own power and heat network here. We generate the heat centrally and then distribute it around the campus from the Energy Centre. We have our large tunnel network to distribute heat and power through the buildings. If you visit a similar sort of campus like a large hospital, you will see all the pipes above ground — we are able to store it all under the streets. It is very discreet and out of sight.”

The project makes significant carbon savings of around 2,400 tonnes a year. Caldwell is proud of the efficiency of the two gas-fired combined heat and power engines, from which waste heat generated by the exhaust is captured and fed into the boilers, where it is turned into water to heat the buildings. The three new boilers are replacing three steam boilers that, after 25 years’ service, had reached the end of their lifespan. At the same time, the water pipe network — which carries about 132,000 litres of water round the campus — is being increased in size to take the additional heat load. Heating units in the plant rooms beneath each individual building are also being upgraded. In the handful of places where steam is still needed — for autoclaves and steam sterilizers, for example — it is now generated locally.

At the Energy Centre, a back-up in December, the challenge is to make for far greater environmental and economic efficiencies. The financial savings that Imperial receives from generating its own electricity are already substantial, but Caldwell believes even more can be done in conjunction with net zero planning that is in development. “I am now looking at the next phase of the project, which is going back to grassroots and reducing demand,” he says.

"I believe that rather than creating innovative new ways to generate heat, we should reduce the need in the first place. There are a lot of huge and complex research projects that go on in our buildings and these require a lot of heat and a lot of power — but there can be a lot of waste that goes along with that. We are seeking the most efficient and optimised solutions for these buildings."

To find out more, visit imperial.ac.uk/estates-projects/construction-projects/current-projects/and if you have any stories about ‘underground adventures’, let us know at imperialmagazine@imperial.ac.uk
Every minute, somewhere in the world, 25 babies are born early. That’s 13 million babies a year born preterm, or one in ten. And while there have been extraordinary advancements in their care and treatment, and acceptance that preterm babies – even those delivered many weeks early – can survive, that number isn’t coming down.

“Being born preterm is the single biggest cause of the death of children under the age of five anywhere in the world,” says Phillip Bennett, Professor of Obstetrics and Gynaecology and Director of the Institute of Reproductive and Developmental Biology. Globally, he says, there are huge discrepancies in survival rates. In high-income nations, a baby born at about 32 weeks has around a 95 per cent chance of survival, but of those born in a low-income country at the same gestational age, only half will survive.

Babies that survive being born preterm can spend long periods in neonatal intensive care units, separated from their family. They’re at risk of various long-term health problems, including physical and learning disabilities, and are subject to behavioural, emotional and educational difficulties.

One of the challenges with preterm birth is that it can be caused by a wide range of different problems, and doctors aren’t currently able to predict who is at risk. But now, researchers at Imperial are working, as part of the Imperial NIHR Biomedical Research Centre, to understand what causes babies to be born prematurely – and what treatments might be effective to prevent this.

A vital part of their work lies in partnerships with two charities. Professor Bennett directs (with colleagues Tom Bourne and Lesley Regan) the Tommy’s National Miscarriage Research Centre at Imperial, and (with Lynne Sykes, who is funded by the Parasol Foundation, and David MacIntyre) the March of Dimes Prematurity Research Centre (PRC). Established in 2018, the March of Dimes PRC has already made significant discoveries. The centre has focused on the connection between preterm birth and the maternal microbiome: the community of microorganisms inside a pregnant woman’s body.
"In the past 30 or 40 years, it’s become increasingly recognised that infections are a significant cause of preterm birth," says Bennett. "But it’s not a classical infection, it’s more a relationship between the bacteria that normally live in the genital tract, and a woman’s immune response to it. Our work has focused on these bacterial immune system interactions, and we’ve made two important findings."

The March of Dimes team has developed a diagnostic test to simultaneously determine if a mother’s microbiome is healthy or not and if the mother is mounting an adverse immune response to it. The test could help identify women at risk of preterm birth sooner, allowing obstetricians to closely monitor them. They are also developing the use of live biotherapeutics (“A bug that is a drug,” says Bennett) to change the bacteria present from an unhealthy spectrum to a healthy one.

Another arm of the research focuses on when to deliver babies that are not growing at the rate they should be in the womb. “In about ten per cent of pregnancies there’s a small baby, and two to three per cent are genuinely growth restricted,” says Christoph Lees, Professor of Obstetrics. Fetal growth restriction (FGR) accounts for half of the cases of stillbirth in the UK, so working out when to deliver these babies is important. “Deliver them too early and you can cause potential harm and days or weeks on the neonatal unit,” says Lees. “But delivering too late can lead to stillbirth. It is a difficult balancing act."

A BENCHMARK STUDY

Currently there are many different methods and tests to monitor FGR in women but no consensus on the optimal timing of delivering such babies in late preterm pregnancy. To try to clarify this, Lees leads the Trial of Randomised Umbilical and Fetal Flow in Europe 2 (TRUFFLE 2) study. It follows the successful TRUFFLE 1 study, which looked at the same issue in babies born extremely early, between 26 and 32 weeks. The results of that study inform how those pregnancies are treated globally. “It has become a benchmark for the management of early growth restriction,” says Lees. “We understand small babies much better now.

While TRUFFLE 1 made a significant impact on our understanding of very early preterm birth, there are many more babies close to term – 32 to 36 weeks – that are growth restricted. "Fortunately, they’re far less likely to have severe illnesses and far more likely to survive, but they do end up on the neonatal unit for quite a long time, and the decision on when to deliver is very important to avoid stillbirth," says Lees.

TRUFFLE 2 works with pregnant women whose babies are smaller or growing more slowly than expected between 32 and 37 weeks. Their babies are closely monitored with ultrasound scans, computerised heart rate tests and Doppler tests for blood flow to the placenta and brain. “The reason we monitor blood flow to the brain is because we know that when babies are not growing as well as they should be, they redirect more of their blood flow to their brain to try and protect it from damage,” explains Dr Bonnie Mylrea-Foley, Clinical Research Fellow and study coordinator for TRUFFLE 2. “We know that this is associated with worse outcomes, so once we see that change, we know that the baby may be compromised.”

At that point, women will be randomly assigned to one of two groups. In one group the babies will be delivered immediately; in the other group they will be monitored closely and delivered if the baby’s heart rate or scans show signs of deteriorating health. All babies in the study have their newborn outcomes recorded and are followed up until they are two years old to assess their neurodevelopment.

“Our work has focused on bacterial immune system interactions, and we’ve made two important findings.”

Phillip Bennett, Professor of Obstetrics and Gynaecology.
What is the turning point, where the balance of the risk of remaining in the womb is greater than the risk of being born slightly early?

Bonnie Mylrea-Foley, TRUFFLE 2 study coordinator

In high-income nations, a baby born at about 32 weeks has around a 95 per cent chance of survival, dropping to just 50 per cent for those born in a low-income country.

“What we’re trying to understand is: do babies do better if we deliver them earlier or do they do better if we continue to monitor them and try and get the pregnancy to go on as long as possible?” says Mylrea-Foley. “What is the turning point, where the balance of the risk of remaining in the womb is greater than the risk of being born slightly early?”

The study has recruited women in dozens of hospitals across the UK and Europe. As Lead Research Midwife on TRUFFLE 2, Jenny Goodier liaises with patients taking part. “When women become eligible for the trial, they are often dealing with the new knowledge that their baby is small, which can be a worrying and stressful time,” says Goodier. “However, I think the main reason women decide to take part is that they want to help other parents in their position in the future. They tell me that if their participation can help how we manage pregnancies like theirs for other families, that they would like to do anything to help.”

A common worry of patients is that they will be put into the ‘wrong’ group. “A lot of women do struggle with that,” says Mylrea-Foley. “However, we explain that both of the delivery options are things that are already happening as part of standard care and that might be recommended to them anyway, and we genuinely don’t know which one is better.” That’s something they hope will change once the study is completed.

A QUEST FOR INNOVATION

Another aspect of Imperial’s work into premature birth is the Neonatal Data Analysis Unit, led by Neena Modi, Professor of Neonatal Medicine. One way her team works to improve preterm care is the creation of the globally unique National Neonatal Research Database (NNRD), a national resource holding real-world clinical data captured on all admissions to NHS neonatal units in England, Wales, Scotland and the Isle of Man.

“We use the NNRD to drive service change, evaluate health services and test treatments and new approaches to care,” says Modi. “For example, we showed that newborn outcomes improve with one-to-one nursing, and women if babies are transferred between neonatal units immediately after birth. We also showed that births of extremely preterm babies fell during the COVID-19 pandemic. This is an extremely important finding as no medical treatment in the history of medicine to date has successfully reduced preterm births.”

For all the impressive science behind the research into preterm birth, those involved are driven by the knowledge that their work has a huge impact on people’s lives. “It’s very important to remember that there are real people on the end of this and they need a lot of help and support,” says Bennett. “Many parents don’t know anything about preterm birth until it happens to them; then they might feel guilty or shame, and they certainly worry a lot about what’s going to happen in the future for them and their families. Being able to help people in most situations is a very fulfilling part of the role.”

Each scientific breakthrough is just one piece of the puzzle. “If we as a research group can do something that leads to better outcomes for women and babies, then I’m enormously proud of that,” says Lees. “It’s a constant quest for innovation and improvement, and one must never assume that you’ve come up with the final answer. But you can keep taking steps towards much better answers.”

For the latest news and updates on the TRUFFLE study, visit truffle-study.org
Step into the ordinary looking, glass-fronted modern building just around the corner from the main entrance of the Science Museum and you could be in any workplace in the city. Ranks of wooden desks are populated by workers staring intently at their computer screens. Dotted around the desks are pictures of loved ones, a pair of once-used trainers, the full life and death cycle of a number of houseplants and, more incongruously, a red tricorn hat and yellow flower garland, perhaps from some vaguely remembered office party.

But the name above the main entrance – Sir Alexander Fleming Building – hints that this is no ordinary office. In fact, groundbreaking and potentially Nobel Prize-winning research takes place within its walls, because this is the Facility for Imaging by Light Microscopy (FILM), offering a suite of 15 state-of-the-art microscopes to support breakthrough research across Imperial. Last year, FILM microscopes were used for more than 11,000 hours by 400 scientists and other researchers from 160 different groups around Imperial. And the scope of its work is breathtaking.

“We can be working across five or six different areas every day,” says Dr David Gaboriau, a microscopy specialist at FILM. “In the morning we might image malaria parasites, heart cells and cancer treatments, and then in the afternoon, take movies of live neurons and other cells types in brain sections and nanoparticles inside cells. It is incredible to be on the cutting edge of such world-leading science every day. Sitting alongside Imperial’s scientists as they make their innovative discoveries is like seeing a work of art for the first time.”

The FILM team is composed of Professor Cristina Lo Celso, head of the facility (together with Professor Vania Braga), Dr Volodymyr Nechyporuk-Zloy, facility manager, and two microscopy specialists, Gaboriau and Dr Ana Pereira Da Silva. And the list of people and departments the Facility has worked with reads like a who’s who at Imperial. Many projects...
Sitting alongside Imperial scientists as they make their discoveries is like seeing a work of art for the first time

Dr. David Gaboriau

are being developed with the National Heart and Lung Institute, such as Dr. Charlotte Dean’s work with confocal microscopy of lung slices; Dr. Jorge Bernardino de la Serna’s work on understanding cell-cell interactions at the molecular levels, which promises better drugs to treat diseases like pneumonia and chronic obstructive pulmonary disease; and other collaborations on diseases such as idiopathic pulmonary fibrosis and asthma.

“When we capture something never seen before we’re helping prove a hypothesis or confirm that a paradigm is wrong,” says Lo Celso. “When I first visualised blood stem cells in the bone marrow of anaesthetised mice, for example, the working hypothesis was that they sit adjacent to osteoblasts (bone making cells). Instead, we found the two cell types rarely interacted directly — and indeed several cell types interact with blood stem cells in a very dynamic fashion. This indicated why it has been so difficult to maintain and grow blood stem cells in vitro.”

Users are fully trained, supported and encouraged to be hands-on with the microscopes, following expert training by the FILM team. “Users pay for time on the microscopes by the hour but are also offered extra time to discuss the type of science they are doing, the sample they want to use and the hypothesis they plan to investigate,” says Gaboriau. “This helps the microscopy specialists in choosing the best microscopy for their experiments.”

A widefield instrument works like a standard camera — the sample is illuminated, the shutter opens and the light emitted by the fluorophores is captured by a sensor. It’s very fast, but the camera collects slightly more out-of-focus light than a confocal system. A confocal microscope uses lasers to excite the cells — the laser moves along the sample to create an image, pixel by pixel. It can also acquire a stack of images — rather like slicing up a tomato — and then reassemble them to make a three dimensional model of the sample. The resolution of the image is better, though it is slower to obtain. And then there is the super-resolution equipment. The level of detail resolved by these microscopes can also be used to create “videos” made from taking a series of still photographs at regular intervals, sometimes as much as thousands of times a second for very fast processes. This allows Imperial’s scientists to study the division or movement of cells, the growth of cellular structures, and even the ultra-fast flux of ions such as calcium in and out of the cells, leading to changes in cell fate.

Lo Celso has her own research programme studying blood stem cells and other cells in the bone marrow. Her expertise is in intravital microscopy, which involves implanting an imaging window into the tissue of a mouse, all subject to the UK’s strict animal research controls. Mice are used because their bone marrow and hematopoiesis — the development of blood cells — is very similar to that of humans.

Lo Celso uses FILM’s microscopes to look directly at stem cells in the mouse’s bone marrow while it is anaesthetised. After they wake up, they show no signs of discomfort. “The aim is to understand what the relationship is between where a cell is and what function it is going to have, and we have made several unexpected discoveries along the way,” she says.

“For example, we saw that chemoresistant leukaemia cells literally run across bone marrow space without ever taking a rest. We also found that blood stem cells that have been exposed to certain infections remember this and remain more actively motile when transplanted in an infection-free environment,” says Lo Celso. “These findings promise much for the development of better leukaemia treatment, but also for strategies to preserve stem cells and healthy blood cells during severe infections.”

It’s typical of the research being done at FILM, something Fleming himself would have been proud of, and Lo Celso laughs off the burden of expectation at having the St Mary’s Hospital School grad’s name over the front door. “We get so used to what we are doing because we do it every day,” she says. “We almost forget how exceptional it is — until somebody from outside comes and says simply: ‘Wow.’”

MICROSCOPY IMAGERY: DR DAVID GABORIAU
Harnessing the winds of change to supercharge cyclone modelling

Context
Early in 2023, Cyclone Freddy emerged off the coast of Australia and travelled 5,000 miles to Southeast Africa, making it the longest-lasting and most intense tropical cyclone in terms of lifetime energy ever recorded. Along the way, it claimed 1,484 lives. It was just the latest example of climate change rendering cyclones increasingly destructive, as the rise in sea temperatures gives them more heat, energy and water, making for even stronger winds and even heavier downpours.

Background
Communities are better prepared when they know the probability of a cyclone occurring. However, both observational data and global coarse resolution modelling skills are limited. So an Imperial team, led by Professor Ralf Toumi (Chemistry 1987), Co-Director of Imperial’s Grantham Institute – Climate Change and the Environment, has developed the Imperial College Storm Model (IRIS) to create synthetic cyclones. They teamed up with Vodafone to run it on DreamLab – an app that combines phones into one giant computer processor – and model millions of tropical cyclones globally.

Method
Vodafone’s app, previously used to analyse data on COVID-19 and cancer research, harnesses the processing power of idle smartphones that are signed up to the programme, tapping into the phones’ processors while they’re charging to create a network of devices and create a virtual supercomputer, capable of processing billions of calculations.

“IRIS works out the probability and likely intensity of a cyclone at any time anywhere in the world,” says Toumi. “IRIS creates millions of tracks and landfalls of cyclones. We build algorithms based on historical observations but also informed by our physics understanding – for instance, knowing the sea surface temperature enables you to forecast the potential maximum intensity and then the decay towards landfall. And phone users need to do nothing except charge their phones.”

Results
As well as creating an enormous database and rolling record of the impact of climate change, the phone mega-power database has also advanced our understanding. “Historically, modellers have taken an end-to-end approach, saying: ‘We need to predict the genesis of the storm and the location of where it’s born,’” says Toumi. “From there we predict the track and then where it intensifies, decays and makes landfall. Our results have confirmed that we can predict landfall much better by simulating the last leg from maximum intensity to decay. We were very encouraged that we could simplify the problem and create a higher quality of result.”

And while the concept of synthetic cyclone modelling is not new – such tools are used regularly in the insurance industry – unlike most commercial ventures, Imperial’s work is open source. “There are many interested in this type of information: countries, cities, individuals and businesses. To have the widest possible impact, we can’t be proprietorial,” says Toumi. “We need to be completely transparent about the data and how we have processed it.”

Outcome
This research has a range of applications for the benefit of countries and communities devastated by cyclones. It can, says Toumi, open up conversations on loss and damage – for example, if a nation suffers a stronger cyclone that formed because of atmospheric conditions caused by global warming in another country. “But it also informs how much you spend on climate adaptation,” he adds, “such as sea defences, how strong you make the walls, or whether you invest in mangroves, for instance. You can say: ‘If the intensity will be ten per cent stronger; then the damage will perhaps be 20 per cent greater over a greater area. If that probability is significant then I should spend X on defences – but if it’s only a little change, I’ll build a hospital instead.’”

> imperial.ac.uk/grantham/research/ climate-science/modelling-tropical-cyclones

A two-week residential programme specifically designed for 16- and 17-year-olds with a passion for science, technology, engineering and medicine. Taught by Imperial academics, students will take their subject knowledge to the next level and gain practical skills alongside likeminded peers from across the world.
Stunts, jumps and dance – cheerleading at Imperial is a seriously fun business.

—

 mention Sport England to Rita Correia (Bioengineering 2023), the outgoing president of Imperial’s Cheerleading Society, and her mood darkens. “It’s very insulting that they say cheerleading is not a sport,” she says, “even though it has been classed as a sport for the Los Angeles Olympics in 2028!”

Cheerleading, she explains, is a demanding, competitive performance sport involving synchronised acrobatics, stunts, jumps and dance. There are no pompoms (though there are in non-competitive cheerleading), and it’s not something that happens on the sidelines of another sport. “We are aligned with the American Football Society because we both came out of the American Society,” says Correia. “We socialise with them, but we don’t cheer for them.” The two cheerleading teams at Imperial – Titans Ice and Titans Ignite – train for three hours a week, as well as two hours of strength and conditioning. “I also run and do pilates,” she adds.

The Cheerleading Society takes everyone who tries out – most don’t have experience – but Sport England’s decision impacts on the team. “Not being classed as a sport means we’re eligible for VAT,” says Correia, “so it’s quite expensive.” The team coach local primary school children in exchange for using their mats, and this year the committee has spent time applying for grants and fundraising to keep costs down and stay open to all. “We are competitive, but mostly it should be fun,” Correia says.

She used to be a gymnast, which is related to cheerleading but with one crucial difference: “In gymnastics, the movements are individual, but in cheerleading we work as a team. We rely on each other. If one person isn’t there, we can’t perform.”

A stunt group of four is made up of two bases, a backspot and a flyer. Incoming president and flyer Patricia Acha Zamora (Electrical and Electronic Engineering, Final Year) says she was initially scared of flying. “As a flyer you’re the most visible and you get thrown in the air. When I told my mum she was terrified! So I tried out as a base, but a previous committee member suggested I might be a good flyer, because I love performing and I have a big smile. The cheerier you are, the more points you get!” However, you do get thrown in the air. “It is a dangerous sport, certainly at a higher level,” says Acha Zamora. “You have to trust the others. Once the stunt groups are formed we do a lot of team-building – and a lot of socialising.

“Cheer is both physical and mental,” she says. “If you think you won’t hit a stunt, then you probably won’t. A week before our first competition there was something I just wasn’t getting. It was an inversion, with my hands on the floor, where I had to do a forward roll and land on the backspot’s shoulders, and I’d bring me over. There was a lot of frustration and fear for me. But I talked to my group and the coach and Rita said: ‘Don’t think about it, You’re doing everything right, just trust yourself and your bases.’ And the day before the competition, I landed it, and I landed it in the competition too! I fall in love with it a little bit more every time I perform.”
Test your brain power

Ready to test your little grey cells? Imperial’s top quizzers set the ultimate puzzle challenge to find out just how much you know.

Hard: Give the sequence that joins: a deceptive clupeid; the Merry Monarch’s favoured accompaniment to eggs; Sir Gawain’s first adversary.

Harder: What do Wi-Fi, SOS and Marcel Duchamp’s LHOOQ have in common?

Fiendish: Only Connect wall. Rearrange the wall into rows – each row has a unique common link that must also be identified.

Believe in a bright future

A conviction in the future of solar energy is the driving force behind Christopher Hopper’s success.

Interview: Lucy Jolin

B ecause in primary school, we were all obsessed with computer games. My friend’s dad had taught him a bit of programming, and I thought it would be amazing if I could make a game as well, so my father and I signed up for an adult education class in programming. It turned out to be the perfect hobby for someone like me: a creative outlet that demanded a scientific approach to solving problems. That’s what brought me to Imperial’s MEng Electrical and Electronic Engineering – which, in turn, got me thinking about how to apply my new engineering expertise to pressing challenges outside the classroom.

A group of us wanted to improve people’s access to electricity. We founded equinox, a student-led humanitarian project that aims to uplift rural Rwandan communities through research and technological innovation. The best solution, we found, was solar electricity generation. In my time with the group, we completed projects in four villages, electrifying 600 homes. It was a formative experience, giving me a deep insight into the practical side of energy projects and showing me how engineering can have a tangible effect on people’s lives.

Then, when studying for my MBA at Stanford University, we realised that the software tools we needed to do these projects at scale didn’t exist. So we put our solar business aside to create them – and Aurora Solar was born. We brought on a software developer and an adviser with experience in the solar industry. We had some startup funding and an initial seed round raised $925,000, but renewables were not hot – a lot of investors were intrigued but not willing to commit.

There’s a famous quote from Ernest Hemingway’s The Sun Also Rises, where Bill asks Mike how he went bankrupt. Mike replies: “Two ways. Gradually, then suddenly.” Aurora Solar was like that – but, luckily, in reverse. We grew slowly and steadily, knowing that the tipping point for solar was coming. Now, the world has finally caught up to renewable energy. I believe the world is better off powered by abundant, cheap, clean energy, and I think that’s a future worth fighting for.

We now have a team of more than 500, supporting clients who make more than 100,000 solar designs every week using our AI-powered software. Aurora Solar was the only climate tech business named in the 2022 Forbes AI 50, and was voted as the top solar sales and design software by Solar Power World in 2022.

In the end, solar energy is simply something I believe in and it’s not something I can put aside. I fundamentally believe the world is better off powered by abundant, cheap, clean energy and I think that’s a future worth fighting for. There were plenty of challenges along the way – and there will be more – but it’s that conviction that keeps me going.

Christopher Hopper (MEng Electrical and Electronic Engineering 2011) is co-founder and CEO of Aurora Solar and winner of the Alumni Entrepreneur Award 2023.
Members of the Imperial community are working to increase diversity in STEM and inspire the next generation of scientists and engineers.

Q. What inspired you to set up BBSTEM soon after finishing your MSc?
A. I have long felt that young Black British people need to see successful people on similar journeys to themselves. Though my mum hadn’t been bringing up to me one of her old school friends one evening when we were out shopping together, BBSTEM would probably never have happened! Through that conversation I met a Black guy in his early 30s who had studied engineering at university and was now doing well in business. It was the first time I had met someone with a similar background to me doing what I hoped to do. It was inspirational and I thought there should be a network to help promote career opportunities in STEM for young Black people.

Q. How did your time studying at Imperial help you personally on your journey?
A. Getting to study at Imperial made me realise I, too, was deserving and could occupy a space that other respected individuals would notice. And, of course, being at Imperial is a big advantage in entering the job market, as I didn’t struggle with job offers. Imperial became one of the first universities to join the BBSTEM University Alliance and continues to be one of our biggest supporters.

Q. BBSTEM will be six years old in December. What does the future hold?
A. Black British individuals are as likely as the rest of the UK population to become an entrepreneur and cultivate my three passions – gender diversity, energy and the African continent.

Q. Your career started in 2000 as a Corporate Planning and Development Officer for the Nigerian National Petroleum Corporation in Abuja, Nigeria. What led you to your MBA 13 years later?
A. I constantly push myself against the boundaries. I took my MSc in Energy and Environmental Management and Economics at ENI Corporate University in Milan with no knowledge of the language and no friends or family nearby – it was tough. It became one of my best decisions, though. Choosing to do my MBA at Imperial a decade later was a much easier decision. Having built the technical depth as an economist at that point in my career, I sought to broaden my scope and subject matter expertise. So, I moved into consulting and did the MBA in parallel.

Q. What lessons did you learn from your MBA?
A. Doing an MBA means you meet people who have self-selected to be there to study, learn and meet new people – that gives a different vibe, energy and relationship within the cohort. Imperial nurtures your innate DNA, and being sector-agnostic also expanded our frame of references and networks beyond our sectors. My time at Imperial set me on a journey, using my new tools and building blocks to become an entrepreneur and cultivate my three passion points – gender diversity, energy and the African continent.

Q. What led you to set up Lean In during the recent pandemic?
A. Women were disproportionately impacted by job losses during the pandemic and the crude oil price depression of spring 2020, especially women in middle management. This, unfortunately, resulted in a regression of some of the gains in gender parity made in previous years. I wanted to do something tangible to support women in acquiring the tools and strategies needed to navigate the inevitability of bias in the workplace.

Q. When did you first become interested in science?
A. I grew up in the peaceful medieval town of Valença do Minho in the north of my native Portugal. When I was nine, we had a school lesson about bacteria. I was immediately fascinated and told everyone I wanted to become a scientist. ‘Don’t be crazy’ was the reaction, right up until I was 17. It was the first barrier I felt as a child and one I determined to break.

Q. You became a scientist and set out to encourage others on the same path. When did you start volunteering?
A. I only really felt I was a scientist at the end of the first year of my PhD, when my first paper was published. I wanted to give something back to society and, through the volunteering service at Imperial, I helped out in a local primary school. At the time, I had no experience of teaching science to children. English is not my native language, and the class was very multi-cultural. Then I met Dr Tatiana Correa, and we started organising workshops that connected scientists and children to spark interest in science among Portuguese-speaking primary school children in London.

Q. Together you founded Native Scientists. How did that happen?
A. After the first successful workshop, we entered four social entrepreneurship contests and won them all. But it wasn’t for Imperial’s nurturing environment, Native Scientists – our non-profit organisation connecting scientists with schoolchildren across Europe to reduce inequalities, promote quality education and celebrate diversity – would probably not exist. I had never before felt the encouragement I experienced at Imperial; I could be a scientist, and I did not have to hide my entrepreneurial side. It finally felt normal to have ideas outside the lab!

> Founded by Dr Joana Moscoco and Dr Tatiana Correa, Native Scientists has a network of more than 3,000 scientists across Europe, and their educational programmes have established more than 20,000 connections between scientists and children. nativescientists.org

Q. What did you first become interested in science?
A. I grew up in the peaceful medieval town of Valença do Minho in the north of my native Portugal. When I was nine, we had a school lesson about bacteria. I was immediately fascinated and told everyone I wanted to become a scientist. ‘Don’t be crazy’ was the reaction, right up until I was 17. It was the first barrier I felt as a child and one I determined to break.

> Founded by Dr Joana Moscoco and Dr Tatiana Correa, Native Scientists has a network of more than 3,000 scientists across Europe, and their educational programmes have established more than 20,000 connections between scientists and children. nativescientists.org

Q. Your career started in 2000 as a Corporate Planning and Development Officer for the Nigerian National Petroleum Corporation in Abuja, Nigeria. What led you to your MBA 13 years later?
A. I constantly push myself against the boundaries. I took my MSc in Energy and Environmental Management and Economics at ENI Corporate University in Milan with no knowledge of the language and no friends or family nearby – it was tough. It became one of my best decisions, though. Choosing to do my MBA at Imperial a decade later was a much easier decision. Having built the technical depth as an economist at that point in my career, I sought to broaden my scope and subject matter expertise. So, I moved into consulting and did the MBA in parallel.

Q. What lessons did you learn from your MBA?
A. Doing an MBA means you meet people who have self-selected to be there to study, learn and meet new people – that gives a different vibe, energy and relationship within the cohort. Imperial nurtures your innate DNA, and being sector-agnostic also expanded our frame of references and networks beyond our sectors. My time at Imperial set me on a journey, using my new tools and building blocks to become an entrepreneur and cultivate my three passion points – gender diversity, energy and the African continent.

Q. What led you to set up Lean In during the recent pandemic?
A. Women were disproportionately impacted by job losses during the pandemic and the crude oil price depression of spring 2020, especially women in middle management. This, unfortunately, resulted in a regression of some of the gains in gender parity made in previous years. I wanted to do something tangible to support women in acquiring the tools and strategies needed to navigate the inevitability of bias in the workplace.

Q. When did you first become interested in science?
A. I grew up in the peaceful medieval town of Valença do Minho in the north of my native Portugal. When I was nine, we had a school lesson about bacteria. I was immediately fascinated and told everyone I wanted to become a scientist. ‘Don’t be crazy’ was the reaction, right up until I was 17. It was the first barrier I felt as a child and one I determined to break.

> Founded by Dr Joana Moscoco and Dr Tatiana Correa, Native Scientists has a network of more than 3,000 scientists across Europe, and their educational programmes have established more than 20,000 connections between scientists and children. nativescientists.org

Q. Your career started in 2000 as a Corporate Planning and Development Officer for the Nigerian National Petroleum Corporation in Abuja, Nigeria. What led you to your MBA 13 years later?
A. I constantly push myself against the boundaries. I took my MSc in Energy and Environmental Management and Economics at ENI Corporate University in Milan with no knowledge of the language and no friends or family nearby – it was tough. It became one of my best decisions, though. Choosing to do my MBA at Imperial a decade later was a much easier decision. Having built the technical depth as an economist at that point in my career, I sought to broaden my scope and subject matter expertise. So, I moved into consulting and did the MBA in parallel.

Q. What lessons did you learn from your MBA?
A. Doing an MBA means you meet people who have self-selected to be there to study, learn and meet new people – that gives a different vibe, energy and relationship within the cohort. Imperial nurtures your innate DNA, and being sector-agnostic also expanded our frame of references and networks beyond our sectors. My time at Imperial set me on a journey, using my new tools and building blocks to become an entrepreneur and cultivate my three passion points – gender diversity, energy and the African continent.

Q. What led you to set up Lean In during the recent pandemic?
A. Women were disproportionately impacted by job losses during the pandemic and the crude oil price depression of spring 2020, especially women in middle management. This, unfortunately, resulted in a regression of some of the gains in gender parity made in previous years. I wanted to do something tangible to support women in acquiring the tools and strategies needed to navigate the inevitability of bias in the workplace.

Q. When did you first become interested in science?
A. I grew up in the peaceful medieval town of Valença do Minho in the north of my native Portugal. When I was nine, we had a school lesson about bacteria. I was immediately fascinated and told everyone I wanted to become a scientist. ‘Don’t be crazy’ was the reaction, right up until I was 17. It was the first barrier I felt as a child and one I determined to break.

> Founded by Dr Joana Moscoco and Dr Tatiana Correa, Native Scientists has a network of more than 3,000 scientists across Europe, and their educational programmes have established more than 20,000 connections between scientists and children. nativescientists.org

Q. Your career started in 2000 as a Corporate Planning and Development Officer for the Nigerian National Petroleum Corporation in Abuja, Nigeria. What led you to your MBA 13 years later?
A. I constantly push myself against the boundaries. I took my MSc in Energy and Environmental Management and Economics at ENI Corporate University in Milan with no knowledge of the language and no friends or family nearby – it was tough. It became one of my best decisions, though. Choosing to do my MBA at Imperial a decade later was a much easier decision. Having built the technical depth as an economist at that point in my career, I sought to broaden my scope and subject matter expertise. So, I moved into consulting and did the MBA in parallel.

Q. What lessons did you learn from your MBA?
A. Doing an MBA means you meet people who have self-selected to be there to study, learn and meet new people – that gives a different vibe, energy and relationship within the cohort. Imperial nurtures your innate DNA, and being sector-agnostic also expanded our frame of references and networks beyond our sectors. My time at Imperial set me on a journey, using my new tools and building blocks to become an entrepreneur and cultivate my three passion points – gender diversity, energy and the African continent.

Q. What led you to set up Lean In during the recent pandemic?
A. Women were disproportionately impacted by job losses during the pandemic and the crude oil price depression of spring 2020, especially women in middle management. This, unfortunately, resulted in a regression of some of the gains in gender parity made in previous years. I wanted to do something tangible to support women in acquiring the tools and strategies needed to navigate the inevitability of bias in the workplace.

Q. When did you first become interested in science?
A. I grew up in the peaceful medieval town of Valença do Minho in the north of my native Portugal. When I was nine, we had a school lesson about bacteria. I was immediately fascinated and told everyone I wanted to become a scientist. ‘Don’t be crazy’ was the reaction, right up until I was 17. It was the first barrier I felt as a child and one I determined to break.

> Founded by Dr Joana Moscoco and Dr Tatiana Correa, Native Scientists has a network of more than 3,000 scientists across Europe, and their educational programmes have established more than 20,000 connections between scientists and children. nativescientists.org
When the Treasury want to know the implications of a decision, they call us

Managing Britain’s economy is challenging for any politician, especially as must have no background in economics. Inevitably they need help, and much of it comes from Imperial’s Professor of Financial Economics, Professor David Miles, a member of the Office of Budget Responsibility (OBR), whose three experts provide the government with independent economic forecasts and analysis of the public finances.

“We do not tell the Chancellor what to do,” says Miles. “Government makes its own plans on taxes and spending – but it asks us for our objective assessment on the likely implications.”

For instance, the government focuses on its plans on taxes and spending, but asks us for our objective assessment of the public finances. “Government makes its own plans on taxes and spending, but asks us for our objective assessment on the likely implications.”

Government makes its own plans on spending, but asks for our objective assessment

Incredible research breakthroughs. Lively graduate events taking place across the globe. A host of brilliant benefits. Want to be the first to hear about everything Imperial? It’s simple: just update your contact details and preferences – and we’ll do the rest.

Of course, you get to choose what you’d like to hear about. Keen to keep in touch with Imperial and your classmates in real life, we regularly hold events around the world, including events such as our Global Celebrations. Just let us know where you live and we’ll keep you up to date.

Or if you want to keep in touch with Imperial and your classmates in real life, we regularly hold events around the world, including events such as our Global Celebrations. Just let us know where you live and we’ll keep you up to date.

Don’t miss out! Make sure we have your details to access the very latest news and benefits for the Imperial community —
A skate way to travel

Dariusz Duszynski (MSci Physics 2023, PhD in Laser Amplification for Plasma Experiments).

Words: Greer McNally / Photography: Joe McGorty

We've always been a skater — and for the longest time, Imperial was the only university in the country with its own skate society. It was a big draw for me. In my first week, I was able to meet people with the same hobby and by my third year I was the society president. We meet in Hyde Park and there's a real sense of community. The main thing I'm into is freestyle slalom. It's like combining figure skating and dance battle. It involves equally spaced cones and you have a set amount of time to do your most impressive routine around them. At the other end of the skating spectrum, I also do speed skating. We've actually entered a couple of competitions while I've been here, and I ended up organising two of those.

The first was the Berlin skate marathon, which is exactly as it sounds — a marathon but on inline skates that happens two days after the Berlin Marathon. It's great fun and takes you past all the landmarks. The other one was in Le Mans, it's a 24-hour relay race on the two days of the year when there isn't any motorsport there. It was a fantastic experience.

Inline skating is actually one of the two reasons I chose Imperial. The Outreach science labs, a STEM potential programme that introduces schoolchildren to the idea of attending university, was the other. It's typically for kids from backgrounds who aren't likely to go on to higher education. I was encouraged to take part in it when I was at school, and it changed my life for the better. I wanted to do the same for other kids like me, so now I volunteer with the Outreach labs. I love showing them that there's this really cool, different life out there that they didn't think they could access.

One of my favourite experiments is when I make a superconductor levitate above a magnet. There are always oohs and aahs. You can grab a piece of paper and show there's no strings attached. The kids love it and it's nice to see them happy with the real physical explanation. Just as I was when I was in their shoes.