

## Multi-Criteria Analysis for Optimal Selection of Waste Management Technologies for Mumbai,

Jash R Rughani

Department of Civil and Environmental Engineering, South Kensington Campus, Imperial College London.

### AIM

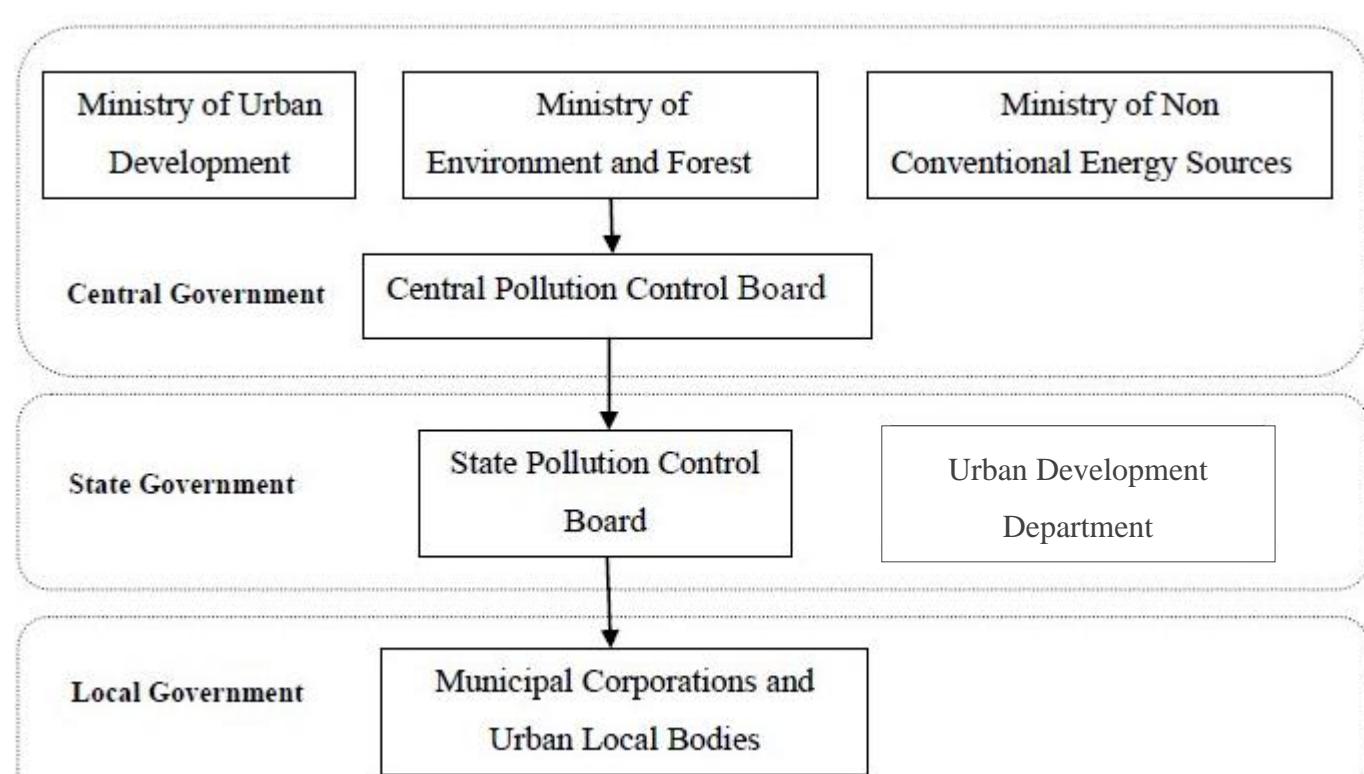
- Multi-Criteria Analysis to identify waste management techniques that offer the most benefits in terms of environmental, health, technical, economics and social aspects for Mumbai, India.

### WHAT AND WHERE IS THE PROBLEM ?

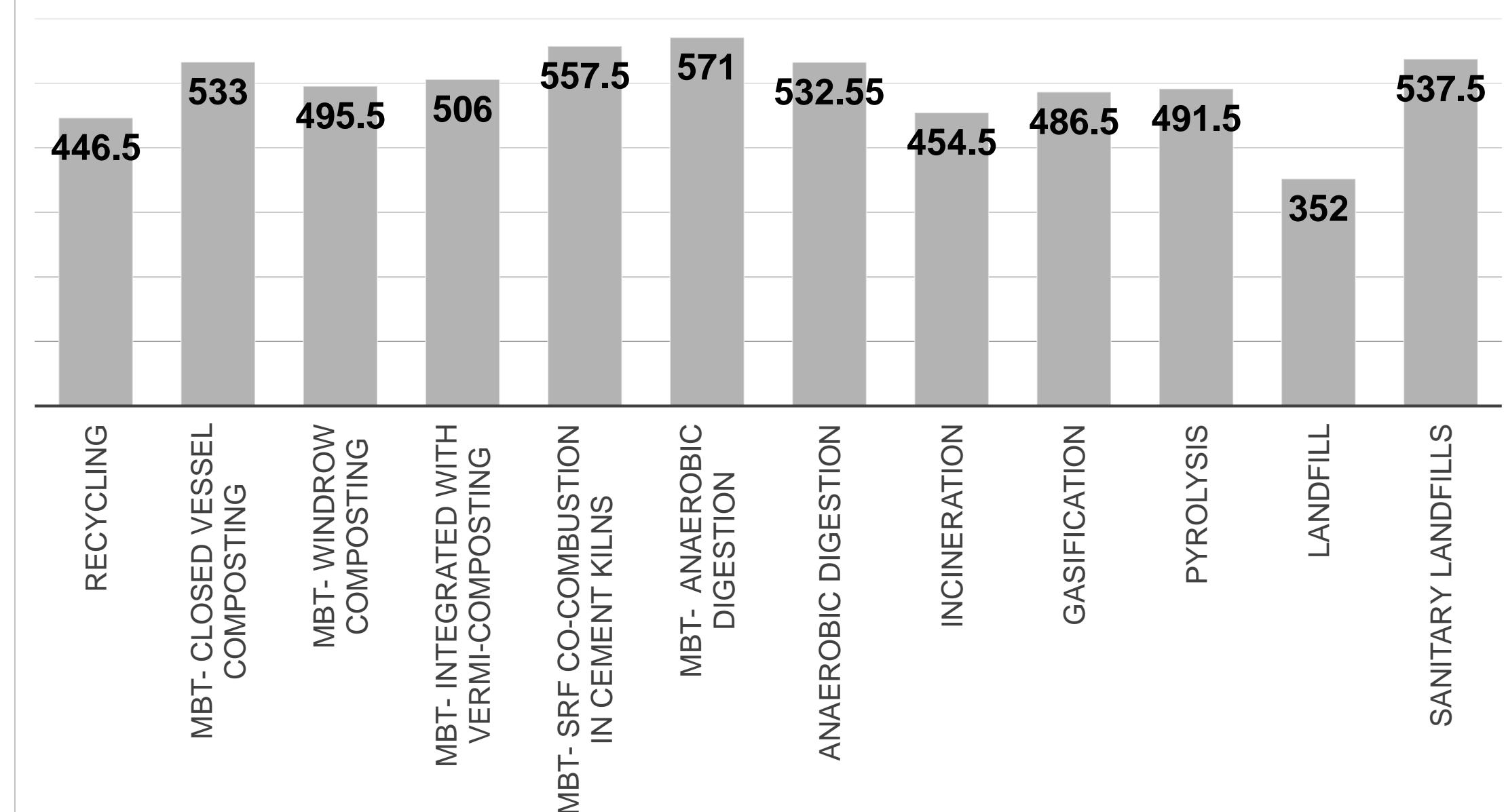


|                       | Deonar                                                                   | Mulund                                                               | Gorai                        |
|-----------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------|
| Total Area (hectares) | 132                                                                      | 25                                                                   | 19.6                         |
| Date of Establishment | 1927                                                                     | 1968                                                                 | 1972                         |
| MSW received (TPD)    | 4,100                                                                    | 600                                                                  | 1,200                        |
| Debris received (TPD) | 1,000                                                                    | 200                                                                  | 1,200                        |
| Wards Supplying Waste | A, B, C, D, E, F/N, F/S, G/N, G/S, H/E, H/W, K/E, L, M/W, M/E, N, Market | A, C, D, E, F/N, G/N, G/S, H/W, H/E, K/W, K/L, M/W, M/E, N, S, and T | R/S, R/N, R/C, K/W, P/N, P/S |

- Inadequate waste collection and uncontrolled disposal represent a hazard to human health and to the environment.
- The proportion of wet biodegradable organic matter in MSW is high thereby reducing the calorific value of MSW to 800-1000 kcal/ kg as compared to 1500-2700 kcal/kg in high-income countries.
- Considering that the volume of waste is expected to increase at the rate of 5% per year on account of increasing population and changing lifestyles, it is assumed that urban India will generate 276,342 TPD by 2021, 450,132 TPD by 2031 and 1,195,000 TPD by 2050.


### BREAKDOWN OF MSW COMPOSITION

| Component                   | Percentage on wet weight basis |
|-----------------------------|--------------------------------|
| Organics/Compostable matter | 37%                            |
| Paper/ Cardboard            | 15%                            |
| Sand and Fine Earth         | 35%                            |
| Plastics                    | 0.75%                          |
| Metals                      | 0.8%                           |
| Glass                       | 0.4%                           |
| Others                      | 13%                            |


### INNOVATIVE SCHEMES

- Slum Adoption Schemes** - wherein local community based organisations (CBOs) are registered and incentivised for waste collection and maintenance of general hygiene, have been launched by the MCGM for slum areas. The MCGM has already registered 249 such CBOs covering about 4.8 million of slum population.
- Clean Development Mission**, an offshoot of the Kyoto Protocol, provides financial support from carbon credit to support environmentally sustainable and financially viable waste management practices. The CDM has emerged as a comprehensive scientific system for managing unprocessed municipal waste that has accumulated at dump sites in the city for several years.

### HIERARCHY OF INSTITUTIONAL FRAMEWORK



### PERFORMANCE ASSESSMENT



### SENSITIVITY ANALYSIS

| Weighting Criteria - 1                 |    | Weighting Criteria - 2                 |    |
|----------------------------------------|----|----------------------------------------|----|
| Environmental                          | 25 | Environmental                          | 15 |
| Social                                 | 25 | Social                                 | 15 |
| Health                                 | 20 | Health                                 | 20 |
| Economic                               | 15 | Economic                               | 35 |
| Technical                              | 15 | Technical                              | 15 |
| Ranking                                |    | Ranking                                |    |
| 1. MBT followed by Anaerobic Digestion |    | 1. MBT followed by Anaerobic Digestion |    |
| 2. MBT followed by SRF in cement kilns |    | 2. MBT followed by SRF in cement kilns |    |
| 3. Sanitary Landfill                   |    | 3. Sanitary Landfill                   |    |
| Weighting Criteria - 3                 |    | Weighting Criteria - 4                 |    |
| Environmental                          | 35 | Environmental                          | 10 |
| Social                                 | 10 | Social                                 | 35 |
| Health                                 | 10 | Health                                 | 35 |
| Economic                               | 35 | Economic                               | 10 |
| Technical                              | 10 | Technical                              | 10 |
| Ranking                                |    | Ranking                                |    |
| 1. MBT followed by Anaerobic Digestion |    | 1. MBT followed by Anaerobic Digestion |    |
| 2. MBT followed by SRF in cement kilns |    | 2. MBT followed by SRF in cement kilns |    |
| 3. Closed vessel composting            |    | 3. Closed vessel composting            |    |

### SUCCESS STORY: GORAI LANDFILL SITE



**CONCLUSION:** A holistic study of the current MSW management sector in Mumbai, India revealed many shortcomings in the existing practices. High scoring management options ensured high resource recovery without disrupting the informal sector that is very actively functioning in Mumbai. The analysis identified MBT followed by anaerobic digestion as the most favourable management option for MSW treatment in Mumbai. Conventional landfilling, as is currently practised on a wide scale in Mumbai, emerged as the least favourable treatment option.

**REFERENCES:** Kasturirangan, K., Chandrasekharan, I., Dasappa, S. & Khan, E. (2014) *Report of the Task Force on Waste to Energy*. Planning Commission, India.

Yadav, K. D., Tare, V. & Ahammed, M. M. (2012) Integrated composting-vermicomposting process for stabilization of human faecal slurry. *Ecological Engineering*. 47, 24-29.

**ACKNOWLEDGEMENTS:** Professor Stephen Smith, Dr. Sue Grimes