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Abstract

Numerical inversion of Laplace transform is known to be equivalent to approximat-

ing a shifted version of the Dirac impulse function with a linear combination of complex

exponentials. From this knowledge, we construct a general framework to approximate

that function with concentrated matrix exponential distributions, characterized by low

coefficient of variation. That structure generalizes the method proposed by Horváth,

Talyigás and Telek; and it guarantees numerical inversions without positive or nega-

tive overshoots. Optimization is done for a specific class of inversion methods within

that framwork, with a semi-deterministic algorithm based upon evolution strategy and

gradient descent. This result in approximation errors evolving as O(1=n2). Finally, we

propose an analytical method with error of type O(1=n) to bypass optimization.
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Chapter 1

Introduction

Laplace transform is an integral based transform widely applied in various areas of

science. Within the (complex-valued) Laplace frequency domain, mathematical op-

erations that are expensive in the (real-valued) time domain can become relatively

simple. For example, di�erentiation involves a simple multiplication operation, inte-

gration a simple division operation and convolution of two functions involves �nding

the product of their respective Laplace transforms.

It is often desirable to return to the time domain through the inversion of a Laplace

transform. This is often not possible to do analytically. In this context, numerical

Laplace transform inversion is a useful tool; see for example its use in the response

time analysis of concurrent systems [1]. There are various techniques for numerical

inversion of Laplace transform, e.g. the Euler, Gaver-Stehfest, Talbot methods, but

they all run into stability problems of various kinds, especially when inverting discon-

tinuous functions.

In [2], J. Abate and W. Whitt introduce a uni�ed framework to numerically invert

Laplace transform. The general idea is to approximate the inverse Laplace transform

with a �nite linear combination of values of the transform. From a theoretical view-

point, this framework is strictly equivalent to approximating a shifted version of the

Dirac impulse function with a linear combination of complex exponentials. Using this

equivalence, Horv�ath, Talyig�as and Telek propose a numerical inversion method with-

out positive or negative overshoots in [3], unlike the methods mentioned earlier. Their

method consists in approximating the Dirac impulse function with matrix exponential

distributions, characterized by minimal coe�cient of variation.
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In this thesis, we propose a natural framework to approximate the Dirac impulse

function with strictly positive and concentrated matrix exponential distributions, as a

generalization of the Horv�ath-Talyig�as-Telek (HTT) method. Thus, inversion methods

derived form that framework are free of positive and negative overshoots. Then a class

of inversion methods with squared coe�cient of variation of typeO(1=n2) is specif-

ically studied. Signi�cant results include the proposition of an explicit and optimal

approximation of Dirac impulse function with squared coe�cient of variation evolving

as O(1=n). Other major result is the reduction of the length of the integral for the

calculation of the moments of the approximation of the shifted Dirac impulse. This

constitute the idea behind the reduced moments triangulation (RMT) and the reduced

moments convergence (RMC). Furthermore, we propose two methods to compute the

coe�cients used in the Abate-Whitt framework. The �rst method takes inspiration in

the integral calculation of Fourier series coe�cients. The second and faster method is

based upon recursion. Finally, we design a simple and e�cient algorithm, to minimize

the coe�cient of variation, based upon a combination of evolution strategy and gra-

dient descent.

Organization

(i) In Chapter 2, Laplace transform is formally de�ned, followed by an enumeration

of its basic properties which are then illustrated with classical examples.

(ii) The inversion problem is introduced in Chapter 3, followed by an examination of

the Abate-Whitt framework. After that, we review classical inversion methods

and present the HTT method.

(iii) In Chapter 4, we introduce our framework, along with its properties, before

de�ning approximation classes inherited from function spaces.

(iv) In Chapter 5, the monomials semi-frequencies class is studied in depth. In par-

ticular, we formulate and prove the RMT and the RMC. Then, we derive two

methods to calculate the coe�cients for the Abate-Whitt framework. Finally,

we propose an additional measure of concentration and reinterpret the HTT

method.

(v) In Chapter 6, we design an optimal and analytical inversion method for a subclass

the monomials semi-frequency class.

(vi) In chapter 7, we discuss optimization methods to minimize the coe�cient of

variation for the monomials class. The results are then evaluated in Chapter 8.
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Chapter 2

Background

2.1 De�nition of Laplace transform
The unilateral or one-sided Laplace transform (LT) is an integral operator which maps

real-valued or complex-valued functions, de�ned on the positive real axis, into complex-

valued functions, de�ned in a region of the complex plane.

De�nition 2.1.1. If the function f : R+ ! K is real-valued (K = R) or complex-

valued (K = C), then its Laplace transform is the continuous summation of exponen-

tially weighted values taken on the positive real axis and de�ned as follows

Lf f g(s) =
Z 1

0
f (t)e� stdt, s 2 C

That de�nition is valid when the integral is convergent. In practice, it depends on

the Laplace domain variables 2 C and the asymptotic behavior of the function to be

transformed as the upper-bound of integration is not �nite. Yet, a su�cient condition

for convergence of the integral is thats veri�es the inequality Real(s) �  , where 

is a real number such thatf is dominated by a positive multiple of the exponential

function t 7! et , i.e

9A > 0; j f (t) j� A � et as t ! 1 (2.1)

If f veri�es that condition, then it is said to be of exponential type and in such case,

the Laplace transform is well-de�ned when s belongs to the setf z 2 C j Real(z) >  g.

That portion of the complex plane is commonly referred to as the s-plane or the region

of convergence of Laplace transform. It is common to useLf :g to denote the Laplace

transform operator andF (s), f � (s) or Lf f (t)g(s) to denote Lf f g(s).
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Calculation of a Laplace transform

We calculate the expression of the LT for the general power functionpn : t 7! tn ,

wheren is a positive integer. In this speci�c case, the convergence condition reduces

to the inequality Real(s) > 0 because limx!1 xne� x = 0. We start by calculating the

transform for the special case whenn = 0; which means that p0(t) = 1 for t 2 R+ .

Lf 1g(s) =
Z 1

0
e� stdt =

�
e� st

� s

� 1

0

=
1
s

We carry on by establishing a recursive formula linkingLf tn+1 g and Lf tng

Lf tn+1 g(s) =
Z 1

0
tn+1 � e� stdt

=
�
tn+1 �

e� st

� s

� 1

0

+
n + 1

s

Z 1

0
tn � e� stdt (integration by parts)

=
n + 1

s
� Lf tng(s)

Using that relation, we obtain the following results

Lf tng(s) =
�

n
s

��
n � 1

s

�
� � �

�
1
s

�
� Lf t0g(s) =

n!
sn

� Lf 1g(s) =
n!

sn+1

Table of common Laplace transforms

Time domain f (t) Laplace domain F (s) s-plane

� (t) (Dirac impulse) 1 C

u(t) (Heaviside) 1
s Re(s) > 0

tn ; n 2 N n!
sn +1 Re(s) > 0

t1=n; n 2 N 1
s1+1 =n �(1 + 1

n ) Re(s) > 0

e� at 1
s+ a Re(s) > � a

sin(!t ) !
s2+ ! 2 Re(s) > 0

cos(!t ) s
s2+ ! 2 Re(s) > 0

sinh(�t ) �
s2 � � 2 Re(s) > j � j

cosh(�t ) s
s2 � � 2 Re(s) > j � j

ln(t) � 1
s

�
ln(s) + 

�
Re(s) > 0

Remark 1. In this table, �( z) is Euler's Gamma function which veri�es the relation

�( z + 1) = z � �( z) and  is the Euler{Mascheroni constant.
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Assumptions made in this work

1. f is de�ned for positive real numbers

2. f is a real-valued function

3. Lf f g is well-de�ned

2.2 Basic properties
We continue with a non-exhaustive enumeration of basic properties of Laplace trans-

form. These properties are often used for the resolution of linear di�erential equations

and the analysis of the time response of dynamical systems.

Proposition 1. (Linearity) If a and b are complex numbers and the functions f and

g are complex-valued, then theLf :g operator veri�es the linearity identity

Lf af + bgg = aLf f g + bLf gg

Proposition 2. (Time di�erentiation) If f is n times di�erentiable with derivatives

of exponential type, then the LT of its n-th derivative veri�es the identity

Lf f (n)g(s) = snF (s) �
nX

k=1

sn� k f (k� 1)(0+ )

Proposition 3. (Time integration) If f is continuous on R+ , then

L
� Z t

0
f (� )d�

�
(s) =

1
s

� F (s)

With these properties, any linear di�erential equation can be turned into an alge-

braic equation because di�erentiation (resp. integration) in the time domain becomes

multiplication (resp. division) by s in Laplace domain.

Proposition 4. Di�erentiation (resp. integration) in Laplace domain is equivalent to

multiplication (resp. division) of the original function by the time domain variable.

(i) Frequency di�erentiation: Lf tn � f (t)g(s) = ( � 1)nF (n)(s); n 2 N

(ii) Frequency integration: L
� f (t )

t

	
(s) =

R1
s F (z) dz

Proposition 5. The Lf :g operator associates shifts or delays with multiplication by

exponential functions and scaling of variables is reversed.
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(i) Time shift: Lf f (t � a)g(s) = e� asF (s)

(ii) Frequency shift: Lf eat � f (t)g(s) = F (s � a)

(iii) Time scaling: Lf f (at)g(s) = 1
aF

�
s
a

�
; a 6= 0

Proposition 6. (Multiplication) Lf f � gg(s) = 1
2�i limT !1

R� + iT
� � iT F (z)G(s� z) dz with

Real(z) = � where� is in the region of convergence of F.

An interpretation of Proposition 6 is that Lf f � gg is a special convolution ofF and G,

based upon the imaginary part of Laplace domain variable. As a reminder, if u and

v are de�ned on the real axis, then their convolution is de�ned as the parametrized

integral (u � v)( t) =
R1

�1 u(� )v(t � � ) d� .

Proposition 7. (Convolution) Lf f � gg(s) = F (s) � G(s)

Proposition 7 mirrors back Proposition 6 as the LT of a convolution is obtained by

multiplying the individual transforms of the functions involved. As a result, theLf :g

operator establishes an equivalence between products and convolutions.

Proposition 8. (Periodic function) If f is a periodic function of period T, thenLf f g

has the reduced expression

Lf f g(s) =
1

1 � e� T s

Z T

0
e� st f (t) dt

Theorem 1. (Initial value Theorem)

lim
t ! 0+

f (t) = lim
s!1

sF(s)

Theorem 2. (Final value Theorem) If all the poles (zeros of the denominator) of

sF(s) have strictly negative real parts, then

lim
t ! + 1

f (t) = lim
s! 0

sF(s)

2.3 Examples
In this section, we illustrate some properties of Laplace transform with classical exam-

ples. We begin with the resolution of a linear di�erential equation, before evaluating

Dirichlet's integral.
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Resolution of a linear di�erential equation

The aim of this example is to illustrate Proposition 1 and Proposition 2 with the �rst

order di�erential equation : y0+ 5y = 0 and y(0) = 1.

Lf y0+ 5yg = Lf 0g

Lf y0g + 5Lf yg = 0 (linearity)
n

s � Y(s) � y(0)
o

+ 5Y(s) = 0 (time di�rentiation)

(s + 5) � Y(s) � 1 = 0

Y(s) =
1

s + 5

The inverse transform of Y(s) is calculated, either with the time shift property or the

table. Which gives the solution

y(t) = L � 1f Yg(t) = L � 1

�
1

s + 5

�
(t) = e� 5t

This solution is strictly identical to the one that we would obtain with the classical

technique involving the characteristic polynomial of the di�erential equation.

Evaluation of the Dirichlet integral

We now evaluate the integral of the cardinal sine functionsinc : t 7! sin( t )
t on the

positive real axis i.e Z 1

0

sin(t)
t

dt

The �rst step consists in applying Proposition 4 tof : t 7! sin(t) as follows

L
�

f (t)
t

�
(s) =

Z 1

s
F (z) dz =

Z 1

s

1
z2 + 1

dz =
�
2

� arctan(s)

An alternative expression for the leftmost term is obtained with the original de�nition

of Laplace transform

L
�

f (t)
t

�
(s) = L

�
sin(t)

t

�
(s) =

Z 1

0

sin(t)
t

e� stdt

Finally, we take the limit of these expressions as the Laplace domain variable ap-

proaches zero; which gives the value of the Dirichlet integral

Z 1

0

sin(t)
t

dt =
�
2

6



Chapter 3

Inversion problem

As mentioned in Section 2.2, Laplace transform facilitates the analysis of dynamical

systems; specially with Proposition 1, Proposition 2, Theorem 1 and Theorem 2.

However, some transforms must be inverted in order to recover all the information

contained in the time domain signal. For instance, the resolution of the �rst order

di�erential equation in Section 2.1 required to inverse a Laplace transform. That

inversion problem can be formally stated as follows

Problem 1. Given a function s 7! F (s) in the Laplace domain, evaluate the inverse

Laplace transformt 7! L � 1
�

F
	

(t) for any real argumentt � 0.

Except for the special cases whereF corresponds to the transform of a known function,

there is not general closed form expression for the inverse transform. As discussed in

[4, Chapter 3], various inversion techniques rely on expansions or approximation ofF

with power series or orthogonal polynomials for which the inverse Laplace transforms

are easier to determine. Although no explicit expression for the inverse transform is

known, there exists two analytical inversion formulas to calculateL � 1
�

F
	

. The �rst

one uses a complex integral known as Bromwich integral, Fourier-Mellin integral or

Mellin's inverse formula and the second one relies on the calculation of a limit known

as Post-Widder formula.

Theorem 3. (Bromwich integral)

f (t) =
1

2�i
lim

T !1

Z  + iT

 � iT
F (s)estds

 is a real number such that the contour path of integration is in the region of conver-

gence of F.
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Theorem 4. (Post-Widder formula)

f (t) = lim
n!1

(� 1)n

n!

� n
t

� n+1
F (n)

� n
t

�

Formal proofs for these inversion formulas can be found in [4, Section 2.2, Section 2.3].

Even though these formulas constitute systematic ways to calculate the inverse LT

of a function, their e�ective use often requires heavy calculations which can rarely

be performed by hand on a reasonable amount of time. For that reason, practical

applications of these techniques are numerical. However, the complexity of hand-made

calculations is turned into numerical precision and stability problems.

3.1 Abate-Whitt framework
Multiple approaches used to estimate the inverse LT were examined by J. Abate,

W.Whitt et al. They notably introduced a uni�ed framework to construct numerical

LT inversion methods in [2]. As discussed in Section 3.3, classical inversion methods

(Euler, Gaver-Stehfest, Talbot) can be rewritten in this framework.

De�nition 3.1.1. (Abate-Whitt framework) The inverse transformL � 1f F g or f is

approximated by a �nite linear combination of values ofF as follows

f (t) � f n (t) =
1
t

nX

k=1

� kF
�

� k

t

�
; t � 0

The nodes� k and the weights� k are complex numbers which depend neither on the

transform F nor on the time argumentt but only on the order of approximation n.

The independence of the weights and nodes,or simply Abate-Whitt coe�cients , from

both the time argument and the transform is a key requirement in order for this

framework to be applicable to multiple functions at various time points. If the inverse

transform is real-valued, then it is approximated by the real part of that sum, i.e

Real f f (t)g � Real f f n (t)g =
1
t

nX

k=1

Real

(

� kF
�

� k

t

� )

(3.1)

Proposition 9. (Integral interpretation) When the nodes verify Realf � kg � 0, the

Abate-Whitt framework is equivalent to approximating of the shifted-scaled Dirac im-

pulse� (x=t � 1) with a �nite linear combination of exponential functions i.e

� (x=t � 1) � � n (x=t � 1) =
1
t

nX

k=1

� ke� � k
x
t

8



Remark 2. The weights� k and the nodes� k are identical to those in De�nition 3.1.1

Remark 3. To simplify the notations, the approximation of the shifted-scaled Dirac

impulse � n (x=t � 1) is also noted� t
n (x)

Proof.

f (t) � f n (t) =
1
t

nX

k=1

� kF
�

� k

t

�

=
1
t

nX

k=1

� k

( Z 1

0
f (x) � e�

� k
t xdx

)

=
Z 1

0
f (x)

(
1
t

nX

k=1

� ke�
� k
t x

)

dx

=
Z 1

0
f (x) � � t

n (x)dx

The inversion is perfect whenx 7! � t
n (x) is exactly the Dirac impulse function about

time t. But as stated in [3, Section 3], the accuracy of this approximation depends

on the order n and the Abate-Whitt coe�cients. Generally, the exactness of the

approximation gets better when the order increases. Finally, we can remark that

� t
n (x) veri�es a scaling relation which is similar to that of Proposition 5

� t
n (x) =

1
t

� � 1
n

�
x
t

�
(3.2)

and which leads to a simpli�ed interpretation of the Abate-Whitt framework.

Theorem 5. The Abate-Whitt framework is equivalent to approximating of the shifted

Dirac impulse about the point t=1 with a �nite linear combination of exponentials i.e

� 1
n (x) =

nX

k=1

� ke� � k x

3.2 Background on probability distributions
Originally de�ned in [5, p.58], Dirac impulse function (equally known as Dirac distri-

bution, delta distribution or � -distribution) represents the space density of a particle

as a function which is null everywhere except for the argument zero and with inte-

gral over the real numbers equal to one. In principle, that distribution is similar to

probability density functions (pdf).

9



De�nition 3.2.1. In probability theory, a function f de�ned in a given setI is a

probability density function if it satis�es the conditions

(i) 8t 2 I 0 � f (t) � 1

(ii)
R

t2 I f (t)dt = 1

That proximity between Dirac distribution and pdf is legitimized by the fact that

x 7! � (x) is the limit of various density functions. For instance, the uniform distribu-

tion U
�
[0; 1=n]

�
converges toward Dirac distribution asn grows larger. Similarly, the

normal distribution N (0; � 2) converges toward Dirac distribution as gets smaller.

Dispersion metrics

We now move on to discuss some measures used in Statistics and Probability Theory

in order to study a data set or the behavior of a random variable. These metrics are

averaged quantities over all the distribution and called moments.

De�nition 3.2.2. The n-th order moment about the pointc 2 I X for a random variable

X with a probability density functionf X is de�ned as the following integral

E[(X � c)n ] =
Z

t2 I X

(t � c)n f X (t)dt

The moments can be given a physical interpretation whenf X represents the repartition

of mass within a body. In particular, the 0th order moment represents the total

mass, the 1st order moment represents the center of mass and the 2nd order moment

represents the moment of inertia around an axis. The 1st order momentE[X ] is known

as the average or mean value of the distribution. In the special cases whenc = E[X ],

the n-th order moment is calledcentral momentand serves as a dispersion measure.

The 2nd order central moment, calledvariance, measures how far a set of random

numbers are from their average value. The 3rd order central moment, known as the

skewness, measures how evenly spread is a set of random numbers around their average

value. Finally, the 4th order central moment, referred to as thekurtosis, measures the

sharpness of the distribution in the vicinity of the average value.

De�nition 3.2.3. The variance of a random variable is de�ned as

var(X ) = E
�
(X � � )2

�
=

Z

t2 I X

(t � � )2f X (t)dt

10



where� = E[X ] is the average value of the distribution. The standard deviation� is

then de�ned as the square root of the variance i.e� =
p

var(X )

De�nition 3.2.4. The squared coe�cient of variation scv(X ) or scv(f X ) of a random

variable X is de�ned as the variance normalized by the average value

scv(X ) = E

" �
X � �

�

� 2
#

De�nition 3.2.5. Pearson's moment coe�cient of skewness (X ) or  (f X ) is de�ned

as the3rd central moment normalized by the standard deviation

 (X ) = E

" �
X � �

�

� 3
#

De�nition 3.2.6. The kurtosis Kurt (X ) or Kurt (f X ) is de�ned as the4th central

moment normalized by the standard deviation

Kurt [X ] = E

" �
X � �

�

� 4
#

The normalization process corresponds to nondimensionalization; such that those mea-

sures can be compared for two random variables with di�erent units. Moving forward,

we can mention another commonly used dispersion metric, the di�erential entropy.

De�nition 3.2.7. The di�erential entropy h(X ) or h(f X ) is de�ned as follows

h(X ) = �
Z

t2 I X

f X (t) log f X (t) dt:

This quantity measures equipartition in the distribution. On one side, the uniform

distribution is known to be the probability distribution with maximum entropy; which

is due to the fact that its pdf is constant onI X . On the other side, Dirac distribution is

an example of distributions that minimize the di�erential entropy; which evaluates to

�1 in this case. This result is explained by the concentration of all the information at

a single point; to such extent that uncertainty about the state of the random variable

vanishes. A standard dispersion coe�cient based upon the di�erential entropy and

similar to the squared coe�cient of variation is discussed in [6].
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3.3 Classical methods

3.3.1 Euler method

The Euler method is based upon the transformation of the Bromwich integral into a

Fourier transform, thereafter approximated by a series via trapezoidal discretization.

The Euler summation is then applied to accelerate the convergence of that series. The

complete procedure produces an approximation of the inverted transform as follows

f (t) �
eA=2

2t
� Real

(

F
�

A
2t

� )

+
eA=2

2t
�

nX

k=1

(� 1)kReal

(

F
�

A + 2ik�
2t

� )

The derivation of the above formula is fully developed in [7] and the general expres-

sions for the Abate-Whitt coe�cients are given in [2, p.16]. We recall them here

(Nodes and weights for odd n)

� k =
n � 1

6
� ln(10) + i� (k � 1) 1 � k � n

� k = ( � 1)k � 10(n� 1)=6 � � k 1 � k � n

where � 1 =
1
2

� n = 2 � (n� 1)=2

� k = 1 1 � k � (n + 1) =2

� n� k = � n� k+1 + � n �
�

(n � 1)=2
2

�
1 � k � (n � 1)=2

3.3.2 Gaver-Stehfest method

The original Gaver method [8] relies on a sampling of the transform about the real axis

and an approximation of the exponential function in the Bromwich integral by a ratio-

nal function. Cauchy integral formula then gives the inverse transform in the Abate-

Whitt framework. Stehfest proposed an acceleration of that method with Salzer's

accelerating scheme for in�nite series. The Abate-Whitt coe�cients are rewritten here

(Nodes and weights for even n)

� k = k � ln(2); 1 � k � n
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� k = ln(2) � (� 1)n=2+ k
min (k;n=2)X

j = b(k+1) =2c

j n=2+1

(n=2)!

�
n=2
j

��
2j
j

��
j

k � j

�
1 � k � n

3.3.3 Talbot method

The Talbot method is based upon a deformation of the Bromwich contour into an

open contour on the negative real axis side. The expressions for the Abate-Whitt

coe�cients are given in [2, p.17] and recalled immediately

(Nodes and weights for all n)

� 1 =
2n
5

� k = � 1� k

�
cot(� k) + i

�
; 2 � k � n

� 1 =
1
5

e� 1

� k =
2
5

"

1 + i� k

�
1 + cot( � k)2

�
� i cot(� k)

#

e� k ; 1 � k � n

� k =
(k � 1)�

n

Numerical approximations of the shifted Dirac impulse function

(a) n=11 (b) n=25

Figure 3.1: Approximation of the shifted Dirac impulse with the Euler method
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(a) n=12 (b) n=20

Figure 3.2: Approximation of the shifted Dirac impulse with the Gaver-Stehfest
method

Figures (3.1) and (3.2) illustrate the approximation of the shifted Dirac impulse with

Euler and Gaver-Stehfest methods. Those approximations take negative values while

Dirac impulse is strictly positive. As a consequence, positive and negative overshoots

can be expected on the inverse Laplace transforms which use those methods. Fur-

thermore, the factorials and the binomial coe�cients in the expression of the weights

can cause numerical instability for high orders. This problem is avoidable for the Eu-

ler method by using the inversion formula in Section 3.3.1. For the Gaver-Stehfest

method, stability can be enhanced with the log � or GammaLn function which veri�es

8x 2 R x! = �( x + 1) = eGammaLn (x+1)

An ultimate solution to stabilize these methods consists in numerically increasing the

oating-point precision in the calculations of the factorials and the binomial coe�-

cients; which can be done with a multi-precision software.

3.4 Horv�ath-Talyig�as-Telek (HTT) method

In [3], Horv�ath, Talyig�as and Telek propose a method to numerically invert Laplace

Transform without positive or negative overshoots. That method approximates the

shifted Dirac impulse function by means of concentrated matrix exponential (ME)

distributions which can be expressed as linear combination of complex exponentials.

14



3.4.1 Background on matrix exponential distributions

De�nition 3.4.1. In probability theory, matrix exponential distributions have proba-

bility density functions of the form

f ME (t) = � � AetA 1; t � 0

where� 2 R1� n , A 2 Rn� n and 1 2 Rn� 1 is a column vector with one as coe�cients.

A random variable with pdf of that form is said to be ME(� ; A)-distributed; and as

discussed in e.g [9, Section 2.1], a given ME distribution can be represented by multiple

pairs, e.g (� 1; A1) and (� 2; A2) where A1 and A2 have di�erent size.

De�nition 3.4.2. The class ME(n) contains matrix exponential distributions which

have a representation of order at most n.

De�nition 3.4.3. If a random variable X is ME (� ; A)-distributed, such that� and

A satisfy the following assumptions

1. � i � 0

2. A i;i � 0

3. A i;j � 0 for i 6= j

4. All the components of the vectorA1 are negative

then X is said to be phase type (PH) distributed orPH(� ; A)-distributed.

Proposition 10. The probability density function ofME (� ; A) distributions have the

following Jordan decomposition

f ME (t) =
kX

i =1

mult (� i )� 1X

j =0

ci;j t j e� i t

where � 1; � � � ; � k with k � n are the eigenvalues ofA, mult (� i ) is the multiplicity of

� i and ci;j are complex numbers.

If any eigenvalue ofA has multiplicity equal to one, then the Jordan decomposi-

tion transforms f ME into a linear combination of complex exponential function; which

means that concentrated matrix exponential distributions can be used for numerical

inversion of Laplace transform. The most commonly used measure for concentration

is the squared coe�cient of variation. The minimum scv is known analytically for

phase-type distributions with the following result, proven by Aldous and Shepp in

[10].
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Theorem 6.

min
X 2 P H (N )

scv(X ) =
1
N

and the equality is obtained for the Erlang distribution of parameter(N; � ) with � > 0.

3.4.2 ME based inversion method

Back to the inversion problem, Horv�ath, Talyig�as and Telek [3] propose to approximate

the shifted Dirac impulse with matrix exponential distributions as follows

� ME (t) = c � e� �t
(N � 1)=2Y

i =1

cos2(!t � � i ) = � 1e� � 1 t + 2
nX

k=2

Real

(

� ke� � k t

)

(3.3)

whereN is an integer andc, � , ! � 1; � 2; � � � ; � (n� 1)=2 are real numbers, optimized to

minimize the squared coe�cient of variation. The optimization is done with a standard

heuristic search algorithm [11, Section 2.8]. Further details about that optimization

process and a list of optimized coe�cients are given in [12, Section 3.3] and [13, Section

3]. In this method, the nodes� k for k = 1; � � � ; n share the same real part� but have

(a) HTT n=10 (b) HTT n=24

Figure 3.3: Approximation of Dirac distribution with the HHT method

di�erent imaginary parts, forming an arithmetic sequence. Figure (3.3) depicts the

resulting distribution and unlike those of the Euler and the Gaver-Stehfest methods,

this function only takes positive values; which prevents positive or negative overshoots

in the inverted transform. Further numerical optimization carried in [13, Section 3.4]

suggests that the convergence of the squared coe�cient of variation is quadratic and

follows the asymptotic law

scv(X ) �
2

N 2
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Chapter 4

General matrix exponential inversion

method

4.1 Principle
We now introduce a general framwork to approximate the shifted Dirac impulse about

the abscissat = 1 with matrix exponential distributions; as a generalization of the

Horv�ath-Talyig�as-Telek method. Our work is focused on matrix exponential distribu-

tions expressed as products of trigonometric functions.

De�nition 4.1.1. ( � -form) The product form or � -form of the distribution function

is de�ned as follows

� N (t) = e� �t
NY

k=1

cos2�
�

wk t + � k

�

whereN and � are positive integers; the decay coe�cient� and the modal frequencies

w1; w2; : : : ; wN are positive real numbers and the modal phases� 1; � 2; : : : ; � N are real

numbers. The termscos(wk t + � k) in the product are referred to as the� -modes.

The � -form can be interpreted as a product-wise superposition of trigonometric func-

tions. The global exponent 2� is intended to make the resulting function positive, as

for the HTT method. We carry on by noticing that this product can be transformed

into a sum of other trigonometric functions. To illustrate that property, we examine

a classic trigonometric formula which relates a product and a sum of cosine functions

2 � cos(x) � cos(y) = cos(x + y) + cos(x � y) (4.1)

Such transformation remains feasible when the product includes powers of trigono-

metric functions cos2(x); cos3(x); : : : ; cosn (x) n 2 N since we can apply Equation (4.1)

repeatedly to reconstruct the individual powers before considering the global product.

17



4.2 Linearization of the product form

A consequence of Equation (4.1) is that the� -form can be rewritten as a sum of

trigonometric functions. We choose to express this alternative form for� N as a linear

combination of complex exponentials in order to remain within the boundaries of the

Abate-Whitt framework. The linearization process is summarized immediately.

Theorem 7. (Euler's identity) Let x 2 R and i such that i 2 = � 1

cos(x) =
eix + e� ix

2

Theorem 8. (Binomial theorem) Let n � 0 be a integer and(x; y) 2 C2.

(x + y)n =
nX

k=0

�
n
k

�
xkyn� k

Step 1 : Each � -mode is transformed into a sum of conjugated complex exponentials

via Euler's identity

� N (t) = e� �t
NY

p=1

 
ei (wp t+ � p ) + e� i (wp t+ � p )

2

! 2�

(4.2)

Step 2 : The Binomial Theorem is then applied to each� -mode

� N (t) =
e� �t

4�N

NY

p=1

"
2�X

kp =0

�
2�
kp

�
e2i (kp � � )( wp t+ � p )

#

(4.3)

Step 3 : The product is expanded and the binomial coe�cients are separated from

the complex exponentials

� N (t) =
e� �t

4�N

2�X

k1 ;k2 ;:::;k N =0

"
NY

p=1

�
2�
kp

� #"
NY

p=1

e2i (kp � � )( wp t+ � p )

#

(4.4)

Step 4 : The product of complex exponentials is transformed into a single complex

exponential, then the modal frequencies and the modal phases are separated

� N (t) =
e� �t

4�N

2�X

k1 ;k2 ;:::;k N =0

"
NY

p=1

�
2�
kp

� #

e
2i

h
t

P N
p=1 (kp � � )wp +

P N
p=1 (kp � � )� p

i

(4.5)
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Equation (4.5) depicts the expected linear combination of complex exponentials that

we now simplify by introducing the following quantities

(a) The combinatorial set: K � = f 0; 1; : : : ; 2� gN

(b) The combinatorial vector: k = ( k1; k2; : : : ; kN )| 2 K �

(c) The combinatorial factor:

"
2�

k

#

= 1
4�N

Q N
p=1

� 2�
kp

�

(d) The semi-frequency: W(k) =
P N

p=1 (kp � � )wp

(e) The semi-phase: �( k ) =
P N

p=1 (kp � � )� p

The linearized� -form is then given a more compact expression that we call: sum form.

De�nition 4.2.1. ( � -form I) The �rst sum form or � -form I of the distribution

function is de�ned as follows

� N (t) = e� �t
X

k 2K �

"
2�

k

#

e2i
�

t �W (k )+�( k )
�

The derivation of the � -form I proves that the � -form can be rewritten in a form

which is compatible the Abate-Whitt framework and constitutes the starting point

for further analysis. We can remark that the nodes are entirely determined by the

decay coe�cient and the semi-frequencies, while the weights are determined by the

combinatorial factors and the semi-phases.

4.3 Semi-frequency classes
In virtue of Proposition 10, semi-frequencies constitute the imaginary parts of the

eigenvalues of the matrix associated to these ME-distributions. Then as indicated by

their de�nition, the semi-frequencies are completely determined by the modal frequen-

ciesw1; w2; : : : ; wN . Theoretically, there are in�nitely many expressions for the modal

frequencies; therefore, we consider the general case when the termswp for p = 1; : : : ; N

are generated by a function that we call: modal frequency generator.

De�nition 4.3.1. The modal frequency generator is de�ned as follows

 0 : N ! R

p 7! wp
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With that function de�ned, we now introduce a class which extends the concept of

semi-frequenciesW(k) =
P N

p=1 (kp � � )wp and constitutes a starting point for the

analysis of the properties that they inherit from modal frequencies.

De�nition 4.3.2. Semi-frequency class (SFC)


 (N;� ) =

(
NX

p=1

(kp � � ) 0 (p) j  0 2 F (N; R); k 2 f 0; 1; : : : ; 2� gN

)

4.3.1 Polynomials semi-frequency class

We can further observe that standtard functions can be approximated by polynomials;

either with Taylor's theorem for di�erentiable functions or with Lagrange polynomial

interpolation theorem.

Theorem 9. (Taylor's theorem) Let n � 1 be an integer and let the function

f : R ! R be n times di�erentiable at the pointa 2 R, then there exists a function

hn : R ! R such that

f (x) =
nX

k=0

f (k)(a)
k!

(x � a)k + hn (x) � (x � a)n

Theorem 10. (Lagrange polynomial interpolation theorem)

Let (x1; y1); (x2; y2); � � � ; (xn ; yn ) be data points such that no twox j are identical. Then

the polynomial

P(x) =
nX

k=1

yk

"
nY

j =1 ;j 6= k

x � x j

xk � x j

#

is the unique polynomial of degree n that satis�esP(xk) = yk for k = 1; 2; : : : ; n

Taylor's theorem is essential for MacLaurin Series and power series. It is particu-

larly e�cient for functions which have simple expressions for their derivatives; such

as exponential functionsf D ke�x = � ke�x g, power functionsf D kxn = n!
(n� k)! x

n� kg or

trigonometric functions f D kcos(x) = cos(x + k�
2 )g. However, not every function is

di�erentiable or has simple derivatives; so the Lagrange polynomial interpolation the-

orem provides an alternative to Taylor's theorem since it only requires values of the

function. Although applicable for any function, the interpolation can diverge when not

enough values of the function are given. These theorems give rise to the introduction

of the subclass of SFC in which the modal frequency generator is a polynomial.
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De�nition 4.3.3. Polynomials semi-frequency class (P-SFC)

� (N;� )
r =

(
NX

p=1

(kp � � ) 0 (p) j  0 (X ) 2 Rr [X ]; k 2 f 0; 1; : : : ; 2� gN

)

In this de�nition for the polynomials semi-frequency class(or simply polynomials class),

� , N and the class indexr are positive integers. Furthermore,Rr [X ] stands for the

set of polynomials of degree at most r and with real coe�cients; which implies that

 0 (x) = ar xr + ar � 1xr � 1 + � � � + a1x + a0 where (a0; a1; : : : ; ar ) 2 R1� (r +1) . This class

is by construction a subclass of 
(N;� ) sinceRr [X ] is a subset ofF (N; R). Moreover,

the sets of polynomialsRr [X ] form an increasing family of sets because any polyno-

mial of degreer can be seen as polynomial of degreer + 1 with zero as the coe�cient

of X r +1 . The polynomials semi-frequency class inherits that property, which can be

summarized with the following inclusions

� (N;� )
0 � � (N;� )

1 � � (N;� )
2 � � � � � � (N;� )

1

4.3.2 Monomials semi-frequency class

The polynomials semi-frequency class can be further reduced by observating that any

polynomial is a linear combination of monomials. As a result, we can de�ne the

subclass of �(N;� )
r in which the modal frequency generator is a monomial.

De�nition 4.3.4. Monomials semi-frequency class (M-SFC)

� (N;� )
r =

(

!
NX

p=1

(kp � � )pr j ! 2 R; k 2 f 0; 1; : : : ; 2� gN

)

Again by construction, the monomials semi-frequency class(or simply monomials class)

veri�es the inclusion � (N;� )
r � � (N;� )

r and constitutes the main area of investigation in

the next chapters. It is already remarkable that the HTT method is in this particular

class whenr = 0. A complete reinterpretation of that method is done in Section 5.7.
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Chapter 5

Monomials class

This chapter focuses on the properties of distribution functions in the monomials semi-

frequency class. First, we discuss main properties of that family of matrix exponential

distributions. Then, we propose a general method to calculate the Abate-Whitt coef-

�cients. Finally, we give a new interpretation of the HTT method. In the general case

of the monomials class, the� -form has the expression

� N (t) = ce� �t
NY

k=1

cos2�
�

!k r t + � k

�
(5.1)

where N and � are positive integers,r 2 N is the class index,� 2 R+ is the decay

coe�cient, ! 2 R+ � is the main frequency and (� 1; � 2; : : : ; � N ) 2 RN are the modal

phases andc 2 R+ � is a normalization constant.

5.1 Properties of the semi-frequencies
In order to study their properties, we introduce a function which generates the semi-

frequencies in the complex exponentials of the� -form corresponding to the� -form

from Equation (5.1). That function is de�ned on K � = f 0; 1; : : : ; 2� gN and referred

to as the semi-frequency generator.

De�nition 5.1.1. The semi-frequency generator is de�ned as follows

 1 : f 0; 1; : : : ; 2� gN ! R

k 7! !
NX

p=1

(kp � � )pr

Remark 4. From now on, r; � and ! are considered to be �xed parameters.
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Proposition 11. The semi-frequency generator can be rewritten as the inner product

 1 (k ) = !
D

k � � 1; pr
E

wherek is a vector in the combinational setK � , pr = (1 ; 2r ; : : : ; N r )| and 1 are vectors

in RN � 1, and h�; �i is the canonical inner product ofRN � 1.

This result is straightforward and is due to linearity of sums. A particular consequence

of that alternative form is that  1 (� 1) = 0. Such identity means that � 1 is mapped

into the zero semi-frequency, which accounts for a constant term in the� -form. That

constant corresponds the mean value of� N as shown in Section 5.5.1.

Proposition 12. (Anti-reection) The semi-frequency generator veri�es the identity

 1 (2� 1 � k ) = �  1 (k )

Proof. It is a direct consequence of properties of the inner product

 1 (2� 1 � k ) = !
D

2� 1 � k � � 1; pr
E

= !
D

� 1 � k ; pr
E

= � !
D

k � � 1; pr
E

= �  1 (k )

The anti-reection implies that any positive semi-frequency has a negative counterpart;

which is due to the expansion of the� -modes into complex exponentials via Euler's

identity. Furthermore, symmetries in Pascal's triangle give the following result

"
2�

2� 1 � k

#

=
1

4�N

NY

p=1

�
2�

2� � kp

�
=

1
4�N

NY

p=1

�
2�
kp

�
=

"
2�

k

#

So Proposition 11 and the symmetry of combinatorial factors guarantee that the re-

sulting distribution function is real-valued because conjugate complex exponentials are

grouped together to reform a cosine function.

Proposition 13. (Jensen's equality) If � is a real number on the interval [0;1],u and

v two vectors inK � , then

 1

�
� u + (1 � � )v

�
= � �  1 (u ) + (1 � � ) �  1 (v)
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Proof. The demonstration is based upon the linearity of the inner producth�; �i and

the trivial vector equality � 1 = �� 1 + (1 � � )� 1.

 1

�
� u + (1 � � )v

�
= !

D
� u + (1 � � )v � � 1; pr

E

= !
D

� (u � � 1) + (1 � � )(v � � 1); pr
E

= !�
D

u � � 1; pr
E

+ ! (1 � � )
D

v � � 1; pr
E

= � �  1 (u ) + (1 � � ) �  1 (v)

Jensen's equality implies that any semi-frequency belongs to a segment whose end-

points are the minimum and the maximum value of 1 . Accordingly, they can be

calculated via linear combinations of those extrema. Then in order to determine the

minimum and the maximum of  1 , the contribution of the components of the input

vectors must be examined; which leads to the next proposition.

Proposition 14. The semi-frequency generator admits a minimum (resp. a maxi-

mum) in K � for the input vector 0 (resp. 2� 1).

(i) minf  1 g =  1 (0) = � !� h1; pr i

(ii) maxf  1 g =  1 (2� 1) = �  1 (0) = !� h1; pr i

Proof. The minimum value of  1 is obtained when all the individual contributions

kp � � are minimal. That situation occurs whenk = 0. In such case, 1 has the

value  1 (0) = ! h0 � � 1; pr i = � !� h1; pr i . Then Proposition 12 i.e anti-reection

guarantees that the maximum is 1 (2� 1 � 0) = �  1 (0)

Proposition 15. The semi-frequencies are all multiples of! in the closed interval

de�ned my the extrema of the semi-frequency generator i.e

8k 2 K � ; 9m 2 N j m! 2
�
 1 (0); �  1 (0)

�
and  1 (k ) = m!

Proof. The Jensen equality implies that all semi-frequencies are in an closed inter-

val, bounded by the extrema of 1 . In virtue of Proposition 14, that interval is
�
 1 (0); �  1 (0)

�
. Furthermore, the sum in De�nition 5.1.1 involves only subtractions

and multiplications of integers; therefore, any output of 1 is a multiple of ! .
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We continue with the development of a potential parametrization of the semi-frequencies

with the real number � from Proposition 13. The idea is to seek for a general form for

a vector k which generates a given semi-frequencym! . First of all, we use Jensen's

equality to parametrize k in the form k � = 2�� 1 + (1 � � )0; which leads to the

semi-frequency 1 (k � ) = (1 � 2� ) 1 (0). Then, we apply Proposition 5:1 to write

 1 (k � ) = m! for some integerm 2
�
0;� h1; pr i

�
. From these two expressions for the

semi-frequency, we can deduce the equality

2� = 1 �
m!

 1 (0)

The original input vector is then given by the relationk � = �
�

1 + m
� h1;p r i

�
1

Although this parametrization gives a general form for the input vectors, it is only

valid for m = 0 and m = � � h1; pr i . This is explained by the fact that those vectors

are not in f 0; 1; : : : ; 2� gN . However, if we ignore that infringement and consider the

special case� = 1, then the N -th root of the combinatorial factor becomes

"
2

k

#1=N

=
1
4

"
2

�
1 + m

h1;p r i

�
1

#1=N

=
1=2

�
1 + m

h1;p r i

�
!
�

1 � m
h1;p r i

�
!

If x = m
h1;p r i and the factorials are replaced with their de�nitions with the gamma

function; followed by the application of Euler's reective formula, then the expression

for the N -th root of the combinatorial factor can be simpli�ed as follows

"
2

k

#1=N

=
1=2

(1 + x)x(1 � x)�( x)�(1 � x)
=

1=2
(1 + x)(1 � x)

�
sin(x� )

x�
(5.2)

Theorem 11. (Euler's reective formula)

�( z) � �(1 � z) =
�

sin(z� )
z 62Z

The singularities of Equation (5.2) correspond to the cases wherek � is the single vector

which generatesm! i.e for m = 0 and m = �h 1; pr i . In practice, that expression is not

applicable because 1 is not an injective function. Besides, �nding all the antecedents

of a given semi-frequency is equivalent to solving a non trivial combinatorial problem,

see Section 5.5.
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5.2 Pseudo-periodicity
As mentioned in Proposition 15, all semi-frequencies are multiples of the main fre-

quency. Subsequently, they share a common period that we now determine. To start

with, we can notice that any integer m 2
�
0;� h1; pr i

�
is associated to the semi-

frequencies� m! . The corresponding period is given by the relation

Tm =
2�

2m!
=

�
m!

We can inject this expression in the� -modes to determine the optimal value ofm

cos2�
�

!k r (t + Tm ) + � k

�
= cos2�

�
!k r t + !k r Tm + � k

�
= cos2�

�
!k r t + �

kr

m
+ � k

�

Since the trigonometric functionx 7! cos2(x) has period� , the optimal value of m is

such that kr =m is an integer fork = 1; � � � ; N ; which is only possible form = 1.

De�nition 5.2.1. (Pseudo-period) The� -modes share a common period, referred to

as the pseudo-period and de�ned as

T =
�
!

Proposition 16. (Auto-similarity) If t � 0 is a real number then the distribution

function veri�es the relation

� N (t + T) = e� �T � � N (t)

Proof. To prove this result, we apply the property of the pseudo-period to calculate

the image of the input t + T with the distribution function.

� N (t + T) = e� � (t+ T )
NY

k=1

cos2�
�

!k r (t + T) + � k

�

= e� � (t+ T )
NY

k=1

cos2�
�

!k r t + � k

�

= e� �T � � N (t)

The auto-similarity indicates that the oscillations of the � -modes are periodically

damped with a logarithmic decrement�T . So in order to concentrate the distribution
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at the point t = 1, that decrement ought to be large enough such that oscillations

after the �rst period are negligible. For instance,� can be chosen such that in the

second period, the amplitudes are 103 or 106 smaller than in the �rst one.

5.3 Reduced moments
As discussed in the previous section, the auto-similarity reduces the analysis of the

distribution function to the �rst period when the decay coe�cient � is large enough.

Intuitively, we can expect the integral in the de�nition of the moments to be reduced

to the �rst period only. This conjecture is formally proven with Theorem 13.

De�nition 5.3.1. (Complete moments) The n-th order complete moment of� N is

de�ned as follows

mn =
Z 1

0
tn � � N (t)dt

De�nition 5.3.2. (Reduced moments) If T is the pseudo period then the n-th order

restricted moment of� N is de�ned as follows

� n =
Z T

0
tn � � N (t)dt

Proposition 17. The Laplace transform of� N veri�es the relation

� N (s) =
1

1 � e� (s+ � )T

Z T

0
e� st � � N (t)dt; Real(s) > � �

Proof. The Laplace transform of� N can be directly obtained with Property 8 and the

frequency shiftproperty. Nonetheless, we outline the elements of proof below.

� N (s) =
Z 1

0
e� st � � N (t)dt

=
1X

k=0

Z (k+1) T

kT
e� st � � N (t)dt (Chasles relation)

=
1X

k=0

Z (k+1) T

kT
e� s(u+ kT ) � � N (u + kT))du (Substitution t=u+kT)

=
1X

k=0

e� k(s+ � )T
Z T

0
e� su � N (u)du (Auto-similarity)

=
1

1 � e� (s+ � )T

Z T

0
e� su � N (u)du (Geometric series)
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5.3.1 Reduced moments theorems

Theorem 12. Reduced Moments Triangulation (RMT)

If n is a positive integer, then the n-th order complete moment of� N is a linear

combination of reduced moments of orders at most n. More precisely,

8n 2 N; mn =
nX

k=0

an;k � � k with an;k = ( � 1)n� k

�
n
k

�
dn� k

dsn� k

(
1

1 � e� (s+ � )T

)

s=0

Proof. To prove this result, we use the Laplace transform as a generator of the

complete momentsof a random variable. Then we apply the General Leibniz rule,

which expresses the derivatives of a product of two functions as linear combination of

products of their individual derivatives.

mn = ( � 1)n dn

dsn

n
� N (s)

o

s=0

= ( � 1)n dn

dsn

(
1

1 � e� (s+ � )T

Z T

0
e� st � � N (t)dt

)

s=0

= ( � 1)n
nX

k=0

�
n
k

�
dn� k

dsn� k

(
1

1 � e� (s+ � )T

)

s=0

�
dk

dsk

( Z T

0
e� st � � N (t)dt

)

s=0

The rightmost derivatives simply as follows

dk

dsk

( Z T

0
e� st � � N (t)dt

)

s=0

=
Z T

0
(� t)k � � N (t)dt = ( � 1)k � � k

The RMT transforms the improper integral in the de�nition of complete momentsinto

a sum of �nite integrals. However, such reduction is compensated by the fact that the

coe�cients an;k for k = 0; � � � ; n are derivatives of a composition of functions. Yet

without explicit di�erentiation, we can note that an;n is independent ofn as follows

an;n =
1

1 � e� �T

The remaining coe�cients can be calculated recursively in the orderan;n � 1; an;n � 2; � � � ; an;0.

Corollary 1. If n is a positive integer,m = ( m0; m1; ; � � � ; mn )| and � = ( � 0; � 1; ; � � � ; � n )| ,

then exists ann � n lower triangular matrix Tm� such that

m = Tm� � �
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Proof. In virtue of the RMT, the coe�cient of Tm� are de�ned as follows

T i;j
m� =

8
<

:
ai;j if j � i:

0 otherwise:

As mentioned earlier, the information contained in the distribution ought to be con-

centrated into the �rst period when the decay coe�cient increases. Without further

calculations, it is straightforward that an;n approaches 1 for� ! 1 . Therefore, to

show that the complete momentsconverge toward thereduced moments, we have to

prove that any coe�cient outside the principal diagonal ofTm� approaches zero when

� gets larger. To that end, we can apply Fa�a di Bruno's formula; which generalizes

the chain rule to higher derivatives for a composition of functions.

Theorem 13. (Fa�a di Bruno's formula)

(f � g)(n)(x) =
X n!

m1! 1!m1 m2! 2!m2 � � � mn ! n!mn
f (m1+ ��� + mn )(g(x))

nY

j =1

�
g(j )(x)

� m j ;

Wherem1; m2; � � � ; mn are positive numbers such that1m1+2m2+3m3+ � � � + nmn = n

In Fa�a di Bruno's formula, f and g are considered to be di�erentiable enough such

that their k-th derivative for 0 � k � n are well-de�ned. Then, the n-th derivative of

f � g is expressed in terms of sums of products of derivatives off and g.

Theorem 14. Reduced Moments Convergence (RMC)

The complete moments converge toward the reduced moments as the decay coe�cient

� grows larger. Which is summarized with the following points

(i) lim � !1 an;n = 1

(ii) lim � !1 an;p = 0 for 0 � p < n

(iii) 8n 2 N; lim � !1 mn = � n

Proof. The �rst results (i) has already been discussed. For the other cases, the func-

tions of interest for Fa�a di Bruno's formula are f : x 7! 1
1� x and g : x 7! e� T x . Those

functions are both in�nitely di�erentiable and their k-th derivatives are de�ned by the

equalities

f (k)(x) =
k!

(1 � x)k+1

29



g(k)(x) = ( � T)ke� T x

The application of Fa�a di Bruno's formula gives the following result

(f � g)(n)(x) =
X n!

m1! 1!m1 m2! 2!m2 � � � mn ! n!mn
�

"
(m1 + � � � + mn )!

(1 � e� T x )m1+ ��� + mn +1

#

(� T)n �e� x �T (m1+ ��� + mn )

Given their de�nition with the RMT, the terms outside the principal diagonal of Tm�

correspond ton 6= 0 in Fa�a Di Bruno's formula. The exponential term enforces the

convergence to zero asx grows larger, hence (ii). The last point (iii) is simply the

applications of (i) and (ii) to the RMT.

We continue with an illustration of the RMT and the RMC on a practical example.

To that end, we have calculated the �rst three moments of� N . If a = e� �T , b= 1 � a

and c = a
b then we can write the matrix equality

2

6
4

m0

m1

m2

3

7
5 =

1
b

2

6
4

1 0 0

Tc 1 0

T2(c + 2c2) Tc 1

3

7
5

2

6
4

� 0

� 1

� 2

3

7
5

It important to notice that this equality is homogeneous from a physical viewpoint.

In fact, if the period T has the dimension oft, then the product T � 0 has the same

dimension as� 1. Which entails that m1 is homogeneous to time, as we could expect.

The same analysis is applicable to the other moments. Finally, it is straightforward

that a ! 0, b ! 1 and c ! 0 when� ! 1 . Therefore, we obtain the expected result.

lim
� !1

2

6
4

m0

m1

m2

3

7
5 =

2

6
4

1 0 0

0 1 0

0 0 1

3

7
5

2

6
4

� 0

� 1

� 2

3

7
5 =

2

6
4

� 0

� 1

� 2

3

7
5

With the RMC, the complexity of computations involving the moments of the distri-

bution can be tremendously reduced if� is large enough. In practice, it is the case

because all the information about the distribution must concentrated into the �rst

period, precisely at the pointt = 1.

5.4 Nodes
We continue the analysis of� N with a simpli�cation of the � -form I, in virtue of the

properties of the semi-frequency generator. The �rst elements to consider is anti-

reection and symmetry of combinatorial factors which guarantee that� N is real-

valued. In fact, any positive semi-frequency has a negative counterpart that can be
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grouped together with Euler's identity, as mentioned in Section 5.1.

Proposition 18. (Order of approximation) The order of approximation for the Dirac

impulse function corresponds to the number of pairs of positive-negative semi-frequencies.

The general expression for the order is given by the following relation

Order(r; �; N ) = 1 + � h1; pr i

Proof. This result is a consequence of the fact that any semi-frequency is a multiple of

! in the interval
�
 1 (0); �  1 (0)

�
. And as mentioned before, pairs of negative-positive

semi-frequencies are grouped together to form a cosine function, in virtue of Euler's

identity. The extra term "1" accounts for the pair of semi-frequencies (� 0; +0).

Knowing the exact order of approximation of the shifted Dirac impulse, we can move

forward by proposing a new expression for the� -form, explicitly in the Abate-Whitt

framework.

De�nition 5.4.1. ( � -form II) The sum form has the alternative form

� N (t) = e� �t
� h1;p r iX

k=0

�
� ke2i!kt + �� ke� 2i!kt

�

where� k for k = 1; � � � ; � h1; pr i are complex numbers which account for the combina-

torial factors and the semi-phases;�� k are their complex conjugate numbers.

Proposition 19. ( � -form III) The sum form has the third alternative form

� N (t) = 2 e� �t � Real

 � h1;p r iX

k=0

� ke2i!kt

!

The � -form III is obtained with the application of the identity z + �z = 2 � real (z).

The factor "2" in the arguments of the exponentials originates from the fact that any

frequency is twice a given semi-frequency. Subsequently, we can deduce a close form

expression for the nodes in the Abate-Whitt framework.

Proposition 20. (Nodes) The node of� N have the same real part and imaginary

parts forming an arithmetic sequence with common di�erence factor2! .

� k = � � 2i!k

This result was proven recursively in [13, Appendix], for the caser = 0.
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5.5 Calculation of the weights
We now focus on the remaining unknowns, the weights� k . As mentioned in Section

5.1, their calculation requires to solve a combinatorial problem because the nodes are

de�ned as follows

� p =
X

k 2K � j 1 (k )= p!

1
4�N

"
2�

k

#

e2i �( k )

It is di�cult and impractical to apply this de�nition for large values of N. That is the

reason why we propose two methods to bypass that shortcoming.

5.5.1 An integral based method

A �rst method is based upon the orthogonality of complex exponentials such that the

weights are calculated in the same way as the coe�cients of a Fourier series.

De�nition 5.5.1. (Projection integral) If k and p are positive integers on the interval

[0;� h1; pr i ] then the projection integral is de�ned as

I (k; p) =
Z T

0

�
� ke2i!kt + �� ke� 2i!kt

�
e� 2i!pt dt T =

�
!

Proposition 21. The integral projector I (�; �) is derived from an hermitian inner

product and veri�es the following relations

(i) I (0; 0) = ( � 0 + �� 0) � T

(ii) I (p; p) = � p � T

(iii) I (k; p) = 0 if k 6= p

Proof. Let us assume thatk 6= p, then the projection integral becomes

I (k; p) =
Z T

0

�
� ke2i!kt + �� ke� 2i!kt

�
e� 2i!pt dt

= � k �

"
e2i! (k� p)t

2i! (k � p)

#T

0

+ �� k �

"
e� 2i! (k+ p)t

� 2i! (k + p)

#T

0

= � k �
e2i (k� p)� � 1
2i! (k � p)

+ �� k �
e� 2i (k+ p)� � 1
� 2i! (k + p)

= 0

Hence the result (iii). The result (i) is trivial since the exponential terms vanish under

the integral sign and the result (ii) follows the same principle as (iii).
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Proposition 22. (Weights) The weights of� N in the Abate-Whitt framework are

given by the relations

� 0 = �� 0 =
1

2T

Z T

0

 
NY

k=1

cos2� (!k r t + � k)

!

dt

� p =
1
T

Z T

0

 

e� 2i!pt
NY

k=1

cos2� (!k r t + � k)

!

dt

Proof. The �rst step is to equate the � -form and the � -form II.

e� �t
NY

k=1

cos2� (!k r t + � k) = e� �t
� h1;p r iX

k=0

�
� ke2i!kt + �� ke� 2i!kt

�

Then one replacese� �t by e� 2i!pt , integrates over the �rst period and gets

Z T

0

 

e� 2i!pt
NY

k=1

cos2� (!k r t + � k)

!

dt =
� h1;p r iX

k=0

I (k; p)

Using the previous results on the values ofI (k; p), we can obtain the expression of each

individual weight. We choose the zero-frequency weights� 0 and �� 0 to be real numbers.

In fact, their imaginary parts cancel each other, leaving only the real part.

5.5.2 Recursive method

Despite being simple to implement, the integral based method requires heavy calcula-

tions when N grows larger. The precision required is ever increasing as the complex

exponentials have high oscillation frequencies. So a more stable method is needed in

order to reduce the cost of computations and to preserve accuracy in the results. We

summarize, a recursive method for� = 1 in the next 4 steps.

Step 1 : For a given integerN , the � -forms of � N +1 and � N verify the relation

� N +1 (t) = cos2
 

! (N + 1) r t + � N +1

!

� � N (t)

Step 2 : The � -form of � N is expanded into the� -form II

� N (t) = e� �t
� h1;p r iX

k=0

�
� ke2i!kt + �� ke� 2i!kt

�
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Step 3 : The cosine term is transformed into its complex exponential form. For

clarity, we use� to designate� N +1

cos2
 

! (N + 1) r t + �

!

=
1
4

 

e2i (! (N +1) r t+ � ) + 2 + e� 2i (! (N +1) r t+ � )

!

Step 4 : The product of these forms yields

� N +1 (t) =
1
2

� � N (t)

+
e� �t

4
� e2i (! (N +1) r t+ � ) �

� h1;p r iX

k=0

�
� ke2i!kt + �� ke� 2i!kt

�

+
e� �t

4
� e� 2i (! (N +1) r t+ � ) �

� h1;p r iX

k=0

�
� ke2i!kt + �� ke� 2i!kt

�

The weights of� N +1 can then be explicitly calculated from those of� N . In application,

only the terms with positive frequencies are relevant since the coe�cients for negative

frequencies can be obtained with complex conjugation. In the light of this observation,

only the products � k � e2i� for (N + 1) r + k � 0 and �� k � e2i� for (N + 1) r � k � 0 are

relevant in the �rst sum; whereas the products� k � e� 2i� for k � (N + 1) r � 0 are of

interest in the second sum.

5.6 Width of the distribution function
The approximation of the shifted Dirac impulse function about the pointt = 1 is

imperfect since the distribution function has a non negligible width, resulting from the

superposition of the� -modes as shown in Figure (5.1). In this section, we determine

an upper bound for that additional measure for concentration by analyzing the� -form.

De�nition 5.6.1. The width � N of the distribution function is de�ned the greatest

di�erence between two consecutive zeros of� N in the vicinity of the point t = 1.

Proposition 23. The width of the distribution function veri�es the inequalities

0 < � N �
�

!N r
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(a) � -modes (b) Superposition

Figure 5.1: Superposition of� -modes in a normalized scalek = 1; � � � ; 10 for r = 0,
! = 2:7233. The phases are� k are optimized to reducescv

Proof. The mode with the highest frequency in the� -form is cos
�
! � N r t + � n

�
. This

mode has the smallest period, thus also has the most zeros within a period. These

zeros can be parametrized as follows

zp =
1

! � N r

 
�
p +

1
2

�
� � � N

!

; p 2 N

The relation between two consecutive zeros is given as the arithmetic sequence

zp+1 = zp +
�

! � N r

Hence the expression for the upper-bound of the width.

We can note that the upper-bound of the width ignores the modal phases� k because

they only serve to shift the position of the zeros of the� -modes on the real axis. So

an optimal parametrization of those phases leads to a reduction of the width and a

signi�cant increase in the concentration att = 1, i.e � N (1) is maximized.

5.7 Reinterpretation of the HTT method
We now reinterpret the HTT method within this framework. The original distribution

function in Equation (3.3) can be rewritten is the standard� -form

� ME (t) = c � e� �t
MY

k=1

cos2(!t + � k); M = ( N � 1)=2 (5.3)
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from which we deduce that the HTT method uses matrix exponential distributions in

the monomials class� (M; 1)
r with index r = 0, general exponent� = 1 and M = N � 1

2 .

The order of approximation of the shifted Dirac impulse function is given by the

relations

Order(r; �; M ) = 1 + � h1; pr i = 1 + h1; 1i = 1 + M =
N + 1

2

This result for the order is strictly identical to the order which is given in [3, Section

4.4] and the� -form III simpli�es to

� M (t) = 2 e� �t

N � 1
2X

k=0

Real
�

� ke2i!kt
�

The main frequency! and the modal phases� 1; : : : ; � M are obtained via optimization

in oder to minimize the squared coe�cient of variation.
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Chapter 6

Unimodal method

In this chapter, we propose an inversion method without positive or negative over-

shoots and with explicit expressions for the Abate-Whitt coe�cients. The shifted

Dirac distribution is approximated as follows

De�nition 6.0.1. (unimodal � -form)

� N (t) = ce� �t � cos2N

�
!t + �

�

The coe�cient � in the general formula for the� -form from Chapter 2 is not relevant

anymore, since it only changes the overall power from 2N to 2�N .

6.1 Weights and nodes
The � -form can be expanded into the� -form directly with Euler's identity and the

Binomial theorem. Which leads to the following propositions

Proposition 24. (unimodal � -form)

� N (t) =
c

4N

�
2N
N

�
e� �t +

c
4N

N � 1X

k=0

�
2N
k

� (

e2i (N � k)( !t + � ) + e� 2i (N � k)( !t + � )

)

e� �t

Proposition 25. (order) The order of approximation of the Dirac impulse function

the in the unimodal class is linear a given by the expressionOrder(N ) = 1 + N

Proposition 26. (weights and nodes) The� -form for the unimodal distribution func-

tion has the alternative form

� N (t) = 2 � Real

 
NX

k=0

� ke� � k t

!
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where the nodes are given by the expressions

� k = � � 2i! (N � k) 0 � k � N

� k =
c

4N

�
2N
k

�
e2i (N � k)� 0 � k � N � 1

� N =
1
2

�
c

4N

�
2N
N

�

Remark 5. To improve numerical stability, the weights may be calculated via the

recursive method proposed in section 5.5

Remark 6. The normalization coe�cient c correspond to the inverse of the0th order

moment of density function i.e1=c= m0 =
R1

0 � N (t)dt =
P N

k=0
� k
� k

6.2 Optimal parameters
We continue by deriving the optimal expressions for the main frequency, the decay

and the phase. The ideas is to look for� N as a sine function in order to take advan-

tage of the results limx! 0 sin(x) = 0, sin(�= 2) = 1 and sin(� ) = 0. A preliminary

parametrization for the unimodal � -form is as follows

� N (t) = ce� �t � cos2N

�
! (t � 1) + �

�
; ! =

�
2

The phase coe�cient then becomes� = � �= 2+ � and we can then notice that if� = 0

then � N (0) = 0, � N (1) = ce� � and � N (2) = 0. In practice, the decay coe�cient shifts

the argument of the maximum to a valuet 6= 1. To o�set this shift, we use the extra

term in the phase coe�cient to cancel the derivative of the density function att = 1,

d� N

dt
=

 

� � � 2N! tan
�
! (t � 1) + �

�
!

� N (t)

which yields � = � arctan
�

�
2N!

�
. Therefore, the optimal phase coe�cient is

� = �
�
2

� arctan
�

�
2N!

�

The decay coe�cient � is chosen such that the amplitudes in the second period are 10r

times smaller than those in the �rst period. This is equivalent to solving the equation
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� N (T) = 10 � r � � N (0) or e� �T = 10� r ; which yields

� =
r! log(10)

�
; r 2 N�

Figures 6.1a to 6.1b depict the resulting distribution function.

(a) order 10 (b) order 24

Figure 6.1: Comparison of the shifted Dirac impulse function with the HTT method
and the unimodal method

The convergence of the unimodal distribution toward the shifted-scaled Dirac impulse

function is slower than that of the HTT method. This behavior accounts for the use of

a single mode, which has a constant width given by the expression� N = �
! = 2. The

width is a constant as there is exactly one zero per period. The squared coe�cient of

variation has been computed numerically up to N=4000 and follows the asymptotic

law

scv(X ) �
0:2
N

Figure 6.2: Squared coe�cient of variation as a function of the order in loglog scale

39



Chapter 7

Optimization for the monomials class

As mentioned in Section 3.4, the parameters of� N must be optimized in order to

reduce the squared coe�cient of variation. Those parameters are represented byx =
�
�; !; � 1; � � � ; � N

�
2 RN +2 , and the distribution function can be written more explicitly

as � N (t; x ). Therefore, any quantity derived form it is also a function ofx .

7.1 Squared coe�cient of variation
We move on to deriving another expression forscv as function of x . To that end,

we �rst recall that � N is a matrix exponential distribution; thus must be normalized.

That normalization is equivalent to dividing all the moments bym0(x ); which give

the new expression for then-th order moment,

~mn (x ) =
mn (x )
m0(x )

from which we can derive the new expression for the squared coe�cient of variation

scv(x ) =
m0(x )m2(x )

m1(x )2
� 1

7.2 Time derivatives of the distribution function
We now determine conditions of the derivative of� N at t = 1, by analogy with the

standard normal distribution N (0; 1) of density function g : t 7! 1p
2�

e� t2
. This func-

tion, also calledgaussian, veri�es that g(4k) has global maximumg(4k)(0) and g(4k+2)

has global minimumg(4k+2) (0) for k 2 N. These results can be proven by induction

and are illustrated in Figure (7.1) fork = 0.
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Figure 7.1: Derivative of a gaussian

Similarly, the parameters of� N have to be optimized such that� (4k)
N

has global maxi-

mum � (4k)
N

(1; x ) and � (4k+2)
N

has global minimum� (4k+2)
N

(1; x ). For simplicity and as a

follow up to the argument given for the reduction of the width of the density function

in Section 5.6, we can seek maximize� N (1; x ).

7.3 Optimization strategy
In order to �nd the optimal parameters we need to solve an optimization problem. In

practice, if f : RN +2 ! R is an objective function, then we have ot �ndx � 2 RN +2

such that f (x � ) � f (x ) for all x 2 RN +2 .

7.3.1 Gradient descent

When f is di�erentiable, we can apply the gradient descent algorithm; which produces

successive candidatesx k for k 2 N� such that f (x 0) > f (x 1) > � � � > f (x n ). The ini-

tial guessx 0 is arbitrarily close to an optimum which may not be the global optimum

if f is not convex. In order to update the candidates, this algorithm uses the gradient

of f to �nd the direction of steepest descent. For that reason, it is categorized as a

�rst-order optimization algorithm.

The procedure is summarized in Algorithm 1. In the version presented, the step

size  is a constant but this coe�cient can be updated at each iteration in order to
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avoid overshoots or divergence from the optimal solution.

Algorithm 1

1: procedure GradientDescent (n; �; ; f; x 0)
2: x = x 0

3: for i  1; n do
4: if kr f (x )k < � then
5: return x . Optimal solution found
6: else
7: x = x �  r f (x )
8: end if
9: end for

10: return x . Maximum iteration reached
11: end procedure

7.3.2 Gradient of the squared coe�cient of variation

In order to apply the gradient descent toscv, we have to calculate its partial derivatives

with respect to the parameters. For the general case, ifx i is a component ofx , then

by logarithmic di�erentiation we have

@scv
@xi

=

 
1

m0

@m0

@xi
�

2
m1

@m1

@xi
+

1
m2

@m2

@xi

!

scv

@mp

@xi
=

Z 1

0
tp �

@�N
@xi

� dt =
Z 1

0
tp �

@logf � N g
@xi

� � N � dt

The logarithm of � N has the expression logf � N g = � �t + 2
P N

k=1 log
�

cos
�
!k r t + � k

�	

from which we can calculate the partial derivatives with respect to the parameters

@logf � N g
@�

= � t (7.1)

@logf � N g
@�k

= � 2 tan
�
!k r t + � k

�
(7.2)

@logf � N g
@!

= � 2t
NX

k=1

kr tan
�
!k r t + � k

�
(7.3)

Remark 7. Given that t 7! cos2(t) has period� , the modal phases can be restricted

to the interval [0;� [ ; which is done with the modulo function.
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Remark 8. For the �rst guessx 0, we can choose� = 1 and randomly select! 2 [0; 2� [

and � k 2 [0; � [ for k = 1; : : : ; N .

The gradient descent algorithm applied to the squared coe�cient of variation generally

�nds a satisfying set of parameters. However, it requires heavy calculations because

any partial derivative of a moment involves an integral. Although they can be reduced

with Theorem 14 by choosing a large enough value for� , this method remains expen-

sive for largeN .

7.3.3 Gradient of the peak of the distribution

An alternative method to reduce the cost of computation is to optimizex in order to

minimize � � N (1; x ). That quantity has the less expensive partial derivatives

@
�

� � N (1; x )
	

@�
= � N (1; x ) (7.4)

@
�

� � N (1; x )
	

@�k
= 2 tan( !k r + � k) � � N (1; x ) (7.5)

@
�

� � N (1; x )
	

@!
= 2

NX

k=1

kr tan(!k r + � k) � � N (1; x ) (7.6)

This second method is a cheaper and faster than that with the coe�cient of variation

as it does not involve any integral. As mentioned earlier, we only use� N (1; x ) but

higher time-derivatives of� N (t; x ) can also be used. A strategy for the �rst guess is

as follows : ifu = [ � � ; ! � ; � �
1; � � � ; � �

N ] 2 RN +2 is the optimal solution for N , then the

�rst guess for N + 1 is as followsx 0 = [1; ! � ; � �
1; � � � ; � �

N ; � ] with � � � � N (0; 1).

7.3.4 Hybridization of (1+1)-ES and gradient descent

We now examine a hybrid optimization algorithm which mixes gradient descent and

standard evolution strategy [11, Section 2.8]. The idea is to replace the generation

of candidates via perturbations via a normal distribution sampling by the gradient

descent based upon� � N (1; x ). Those candidates are then evaluated with the squared

coe�cient of variation and the one with lowest scv is selected as the best solution.

To ease the notations, we rede�ne the objective functions asf 0(x ) = scv(x ) and

f 1(x ) = � � N (1; x ). It p is the maximum number of candidates,� the targeted precision,

n the maximum number of iterations per candidate, the step size andu the optimal

solution for � N � 1 , then we can de�ne Algorithm 2 and Algorithm 3 as follows
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Algorithm 2

1: procedure InitialGuessGenerator (u )
2: Assert u = [ � � ; ! � ; � �

1; � � � ; � �
N � 1] 2 RN +1 . General form foru

3: Sample� � � � N (0; 1)
4: x = [1; ! � ; � �

1; � � � ; � �
N � 1; � ]

5: return x
6: end procedure

Algorithm 3

1: procedure ES-GD (p; n; �; ; f 0; f 1; u )
2: Initialize x � = 0 2 RN +2

3: Initialize � � = 1
4: for i  1; p do
5: x 0 = InitialGuessGenerator (u )
6: c = GradientDescent(n; �; ; f 1; x 0)
7: � c = f 0(c)
8: if � c < � � then
9: x � = c . Better candidate found

10: � � = � c

11: end if
12: end for
13: return x � . Best candidate returned
14: end procedure

For the general case, that algorithm produces better solutions than single gradient

applied to f 1(x ). That is explained by the fact that it takes advantage of the increase

in speed with the replacement ofr f 0(x ) by r f 1(x ) and the natural selection enforced

by f 0(x ).

Remark 9. The di�erential entropy is can also serve as a second selection function,

along with the squared coe�cient of variation. But practical computation of the entropy

requires special attention because the� -modes cancel at several time points; which can

introduce numerical instability with logf � N g.
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Chapter 8

Numerical results

The hybrid optimization method discussed in the previous chapter has been applied to

the monomials class of indicesr = 0 and r = 1 when � = 1. In this section, we present

the global performances obtained with these methods in terms of concentration of the

resulting distributions and accuracy on the inverted transforms.

Coe�cient of variation: numerical results con�rm the asymptotic law unveil in

[13]. As shown in Figure 8.1, the squared coe�cient of variation decrease linearly in

a logarithmic scale as the order increases. A general conjecture for that asymptotic

Figure 8.1: Squared coe�cient of variation for the monomials class (r = 0 and r = 1)
and the unimodal class
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behavior in the monomials class can be summarized as follows

scv
�

� (N;1)
r

�
=

ar

n2

From numerical optimizations carried in this work, we have,a0 � 1:9901 anda1 � 2.

Di�erential entropy : we have calculated the di�erential entropy over the �rst pe-

riod. Figure 8.2 depicts the expected behavior i.e a decreasing entropy as the order

gets larger because all the information about the distribution is getting concentrated

at the time point t = 1.

Figure 8.2: Entropy for the monomials class with indicesr = 0 and r = 1

Overall, these two measures tend to con�rm that the optimization determines optimal

parameters for the approximation of Dirac impulse function. However, we have yet to

�nd out if the functions used numerical optimizations exhibit convex behaviors that

the solution that we get are global optimums.
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Inversion of Laplace transform of the unit step function

(a) n=21

(b) n=201

Figure 8.3: Inversion of the step functionf (t) = u(t) with the optimized monomials
methods, the Euler method and the unimodal method for ordersn = 21 and n = 201.
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Inversion of Laplace transform of a delayed exponential function

(a) n=21

(b) n=201

Figure 8.4: Inversion of the delayed step functionf (t) = u(t � 1)�e� t with the optimized
monomials methods, the Euler method and the unimodal method for ordersn = 21
and n = 201.
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