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Abstract

A very useful cryptographic tool is to allow distrusting parties to jointly

compute a function revealing the output while keeping the input private.

This tool is commonly known as secure multi-party computation (SMC),

and was originally posed by Andrew Yao in 1982.

Since then, many solutions have been proposed including using secret

sharing schemes, homomorphic encryption, or garbled circuits. In this

thesis we look deeper into garbled circuits, an approach that breaks down

a function into a boolean circuit to allow a finer grained manipulation of

the function, yielding an elegant solution to the original problem. We look

at the history, theory, and optimizations in the last few years of garbled

circuits while also proposing a practical implementation.
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Chapter 1

Introduction

1.1 Motivation

In 1982 Andrew Yao posed a relatively simple problem that informally introduced

secure two-party computation. Two millionaires, Alice and Bob, wish to know who is

richer without revealing their wealth to each other. This could be easily solved using

a trusted third party Charlie, whereby Alice and Bob send their personal wealth’s

amount to Charlie and Charlie sends back the result. The goal that Yao posed,

however, was to accomplish this without the use of any trusted third party. In his

seminal works [13, 14] he not only posed this problem but gave an elegant solution

that inspired what later became known as garbled circuits. The secure two-party case

was soon generalized to the multi-party case by Goldreich, Micali and Widgerson [5],

and a new subfield of cryptography was born.

More formally, the initial motivation Yao sought was letting two parties reveal a

function’s output while keeping the input private. In other words, if we have party

PX , party PY , and a function f : X ⇥ Y ! Z for some sets X, Y and Z, then

we would like to know for any x 2 X supplied by PX and any y 2 Y supplied by

PY the value of f(x, y) without PX knowing y and without PY knowing x. For the

Millionaire’s Problem, X = Y = R�0, Z = {0, 1}, PX is Alice, PY is Bob, x and y

are their respective wealth, and f is the function that outputs true if x > y, and false

otherwise.

Up until recently, all advancements in the area were theoretical in nature; that

is, focusing on feasibility instead of practicality. This changed in the last few years,
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however, with the first practical implementation of garbled circuits given by Malkhi

et al. [10] in their Fairplay system, capable of solving the millionaire’s problem in

approximately 1 second or finding the median of two sorted arrays in 7 seconds. With

computers and CPUs getting faster and with each refinement proposed on garbled

circuits, secure two party computation is close to being a widely used cryptographic

tool in our everyday lives.

1.2 Goals

The following goals given in [9] apply to any secure multi-party computation scheme,

but apply for garbling schemes.

• Privacy: No party should learn anything more than its prescribed output. Note

that any deduction the parties derive from the output is fine. For instance, as

Lindell et al. explain, in an auction where the only bid revealed is that of the

highest bidder, we can immediately learn that the other bids were lower than

the winning bid. However, this should be the only information revealed about

the losing bids.

• Correctness: No party can change the output, guaranteeing the final output

is correct. This is less specific to garbled circuits, as we assume a semi-honest

model where the parties follow the protocol, but it is worth mentioning never-

theless.

• Independence of Inputs: Corrupted parties must choose their inputs inde-

pendently from the inputs of the honest parties.

• Guaranteed Output Delivery: Corrupt parties can’t perform a denial of

service attack to honest parties and deny them of learning the output.

• Fairness: A corrupt party may learn the output if and only if an honest party

learns the output.
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1.3 Structure of Thesis

Chapter 1 introduces garbled circuits and the ultimate goal they try to achieve.

Chapter 2 will go into more detail on the original construction of garbled circuits,

formally defining garbled circuits and the underlying security. Chapter 3 explains all

the optimizations proposed in the last few years on garbled circuits, focusing primarily

on size of the garbled table as a benchmark to optimize. Chapter 4 will finally focus

on our implementation, detailing past known implementations and what our new

implementation o↵ers. Chapter 5 concludes the work with some final thoughts and

remarks.
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Chapter 2

Yao’s Garbled Circuits

2.1 Yao’s Solution the Millionaire’s Problem

Yao not only posed the Millionaire’s problem in 1982, but he also gave a simple

solution that became a precursor to garbled circuits. Suppose Alice has i millions

and Bob has j millions, where 1 < i, j < 10 for simplicity. Let M = {0, 1}N , and
let QN = {f : M ! M | f is a bijection}, i.e., the set of bijections from M to itself.

Let EA 2 QN be Alice’s public key, and let E�1
A = DA 2 QN be the private key (one

must exist, as EA is a bijection).

1. Bob picks a random x 2 M , computes privately the value k = EA(x), and sends

Alice t = k � j + 1.

2. Alice computes privately the values yu = DA(t+ u) for u 2 {1, 2, ..., 10}.

3. Alice generates a random prime p of N/2 bits, and then computes zu ⌘ yu

mod p. If all zu di↵er by at least two, then she stops. Otherwise, she repeats

the process with another p.

4. Alice sends the pair (p, {z1, z2, ..., zi, zi+1 + 1, ..., z10 + 1}). In other words, she

adds 1 to every element after the i’th place.

5. Bob looks at the j’th number in the list zj, and concludes that he is wealthier

if x 6⌘ zj mod p, and Alice is wealthier if x ⌘ zj mod p.

6. He communicates the final result to Alice.
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2.2 Oblivious Transfer

OTm0,m1

b

mb

Alice Bob

Figure 2.1: 1-2 Oblivious transfer

Before delving into garbled circuits, we will need to use 1 out of 2 oblivious transfer

(OT), a cryptographic protocol that exchanges selective information between two

parties. That is, say Alice has two secret messages m0 and m1, and Bob has a secret

bit b. Then 1-2 oblivious transfer allows Bob to learn mb without Bob knowing both

messages and without Alice knowing which message Bob chose (see Figure 2.1). A

simple OT protocol would for example be:

1. Alice generates two asymmetric key pairs, (pub0, priv0) and (pub1, priv1).

2. Bob generates a symmetric key K and with his bit b encrypts K as c =

Encpubb(K).

3. Alice decrypts both c0 = Decpriv0(c) and c1 = Decpriv1(c). Notice one of the

two will correctly decrypt K, but she doesn’t know which. Say for example,

c0 = K.

4. Alice sends c00 = Encc0=K(m0) and c01 = Encc1(m1).

5. Bob just decrypts both messages DecK(c00) = DecK(EncK(m0)) = m0 and

DecK(c01) which will just be rubbish.

Although an unfit choice for our implementation (what happens if Alice cheats

and chooses m0 = m1?), it is simple enough to illustrate the purposes of oblivious

transfer. However, in our implementation we will choose a stronger 1-2 oblivious

transfer.
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wa

wb
wcg

Figure 2.2: An OR gate

wa wb wc

0 0 0
0 1 1
1 0 1
1 1 1

Table 2.1: OR truth table

2.3 Boolean Circuits

A gate g is essentially a function g : {0, 1}⇥ {0, 1} ! {0, 1} that has two input wires

and one output wire. A wire is a formal way of stating the set {0, 1}, i.e., a wire can

take the value 0 or 1. In the case of Figure 2.2, we have that the wires are wa, wb and

wc, and that g is an OR gate, the function represented in Table 2.1.

More formally, if we take the definition from Bellare et al. from [4], a circuit is

a 6-tuple f = (n,m, q, A,B,K), where n � 2 is the number of inputs to the circuit,

m � 1 is the number of outputs to the circuit, and q � 1 is the number of gates.

Therefore, if we have n inputs and q gates, we have r = n+q number of wires. Now we

label each input from the set of inputs I = {1, ..., n}, each gate from the set of gates

G = {n+1, ..., r} and note that the the set of wires W = {1, ..., r} can be partitioned

into the set of input wires I = {1, ..., r�m} and output wires O = {r�m+ 1, ..., r}
to form W = I [ O. Then the functions A,B : G ! I identify each gate’s first and

second incoming wires respectively. Finally, K : G⇥ {0, 1}2 ! {0, 1} determines the

functionality of each gate. Note that by definition we require A(g) < B(g) < g for

any gate g 2 G, as otherwise we could have a cyclic graph.

2.4 Yao’s Protocol

We are now in a position to define garbled circuits. In its core, a garbled circuit is a

boolean circuit that has its truth table obfuscated. The elegance resides on how this
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wa wb wc

0 0 0
0 1 1
1 0 1
1 1 1

Before encryption

wa wb wc

k0
a k0

b k0
c

k0
a k1

b k1
c

k1
a k0

b k1
c

k1
a k1

b k1
c

After encryption

Table 2.2: Second step of garbling

circuit is obfuscated to allow the parties to compute the output while keeping the

input private. The protocol has two roles: a garbler and an evaluator.

• Garbler:

1. The garbler, Alice, will first convert a function into a boolean circuit.

2. For each possible true or false value in each wire of the circuit, she

will encrypt this value and call the encrypted value a label or key. For

instance, for a circuit consisting of a single OR gate, the garbler will do

what’s depicted on Table 2.2.

3. Now she needs the evaluator, Bob, to have the power to reach kg(j,k)
c from

having only the two labels kj
a and kk

b , where g is the gate function. If all

keys were created at uniformly and at random, then there would be no

way for the evaluator to deduce k0
c from k0

a and k0
b in the case of Table 2.2.

So we need a “bridge” function f that goes from the input labels to the

output labels of the form

f : ki
a ⇥ kj

b ! kg(i,j)
c

with the strict condition that f is a bijection and that furthermore, no

other output label can be learned other than the one intended by f . In

the original protocol, we set f to be

f(ki
a, k

j
b) = Enc(kia,kjb)

(kg(i,j)
c )

We will see in later chapters that optimizations on garbled circuits optimize

precisely f to achieve faster results.
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4. Alice computes f for every possible combination, scrambles the order she

will present f to the evaluator and sends this to Bob. Again, if we refer

to the example of an OR gate, Alice will send for instance the following to

Bob:

c10 = f(k1
a, k

0
b ) = Enc(k1a,k0b )(k

1
c )

c11 = f(k1
a, k

1
b ) = Enc(k1a,k1b )(k

1
c )

c01 = f(k0
a, k

1
b ) = Enc(k0a,k1b )(k

1
c )

c00 = f(k0
a, k

0
b ) = Enc(k0a,k0b )(k

0
c )

• Evaluator:

1. Bob, the evaluator, will request via Oblivious Transfer (see section 2.2)

either k0
b or k1

b , but Alice will not know which one he will receive due to

the properties of OT.

2. Bob will also receive, along the four ciphertexts cij, Alice’s choice ki
a. If we

recap what Bob possesses, he has, say, k1
b , k

0
a (of course he will not know

that k0
a actually represents false), and four ciphertexts in some order

cij.

3. To recover kg(0,1)
c , he simply needs to apply the inverse of f . In the original

protocol, this would be

f�1(cij) = Dec(k0a,k1b )(cij)

Notice that there are some caveats with this approach. The first is that the

evaluator doesn’t know which ciphertext corresponds to c01. He therefore

needs to decrypt the four ciphertexts. Therefore, he performs

f�1(c10) = Dec(k0a,k1b )(c10) = rubbish

f�1(c11) = Dec(k0a,k1b )(c11) = rubbish

f�1(c01) = Dec(k0a,k1b )(c01) = k1
c

f�1(c00) = Dec(k0a,k1b )(c00) = rubbish

This leads to the second caveat: our encryption scheme needs a way to

know decryption has succeeded. How will Bob know otherwise that he has

8



decrypted the correct c01? In other words, how can Bob tell apart rubbish

from k1
c?

4. Bob, once he learns k1
c , sends it back to Alice, who knows if k1

c represents

true or false, and communicates the result back to Bob. In the case of a

circuit, Bob reuses k1
c as the input to the next gate in the circuit, and so

on. He only sends back the final output of the circuit to Alice.

The communication between Alice and Bob in the protocol can be summarized in

Figure 2.3.

OTk0
b , k

1
b

y

ky
b

Alice, x Bob, y

Garbled circuit and kx
a

kg(x,y)
c

g(x, y)

Figure 2.3: Communication summary

2.5 Formalizing Yao’s Protocol

To begin proving properties of garbled circuits or to simply improve the scheme, we

need to formalize the protocol in section 2.4. The first paper to tie in all the literature

concerning garbled circuits was Foundations of Garbled Circuits, written by Bellare

et al. [4]. They abstract garbled circuits and formalize what is later known as a

garbling scheme. We now detail their definition.

2.5.1 Garbling Schemes

A garbling scheme is a five tuple of algorithms G = (Gb, En, De, Ev, ev):

9



• Gb (Garble): This algorithm is the only one probabilistic in nature (the remain-

ing algorithms are deterministic). It takes as inputs a security parameter k

and a function f and returns a triple (F, e, d). F is the function (or circuit)

representing f , e is an encoding function, and d is a decoding function. The

key part of the definition is that we have for any x 2 {0, 1}n:

f(x) = d(F (e(x)))

For the input x, X = e(x) transforms the input into a garbled input, Y = F (X)

evaluates the garbled input on the garbled function F , and y = d(Y ) turns the

garbled output into the final output y. Of course, y must equal f(x).

• En (Encode): In fact, we have already mentioned the encoding function, so this

algorithm simply takes the function e and the input x and outputs X = e(x),

transforming any input into a garbled input:

En(e, x) = e(x) = X

• Ev (Evaluate): This algorithm takes the garbled function F and a garbled input

X and outputs a garbled output Y :

Ev(F,X) = F (X) = Y

• De (Decode): Similarly, this algorithm takes a decoding function d and a garbled

output Y and returns the final output y:

De(d, Y ) = d(Y ) = y = f(x)

• ev (evaluate): This algorithm is the one that evaluates f(x):

ev(f, x) = f(x)

With all of these algorithms we reach the correctness condition: For any x 2
{0, 1}n

De(d, Ev(F, En(e, x))) = ev(f, x)

Bellare et al. give an illustrative diagram of a garbling scheme in Figure 2.4.

10



Gb En
Ev

ev

Dex

x
f y

y

f

1k

e

F

d

Y
X

Figure 2.4: Components of a garbling scheme

2.5.2 Security of garbling schemes

There are three main notions of security in garbling schemes proposed by Bellare et

al. [4] and summarized in [16].

• Privacy: privacy needs to ensure that (F,X, d) doesn’t reveal any more infor-

mation about x than f(x). Precisely, there must exist a simulator S that takes

input (1k, f, f(x)) and whose output is indistinguishable from (F,X, d).

• Obliviousness: (F,X) should reveal no information about x. Precisely, there

must exist a simulator S that takes input (1k, f) and whose output is indistin-

guishable from (F,X).

• Authenticity: Given only (F,X), no adversary should be able to produce

Y 0 = Ev(F,X) such that De(d, Y 0) = y, except with negligible probability.
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Chapter 3

Optimizations

3.1 Parameters to optimize

3.1.1 Size

The first parameter to optimize is the size of the garbled table Alice sends Bob. In

the classical Yao’s protocol, this number was four, one entry in the table for each

possible boolean pair. We will later see how various methods decrease the number of

entries needed to send over the communication channel.

Most of the research in recent years has focused on optimizing this parameter,

and we will therefore go deeper into the optimizations that have reduced the size of

the garbled table.

3.1.2 Computation

While the size of the garbled table can be reduced, this can come at a cost of having

the evaluator Bob compute CPU-intensive calculations. The aim of this parameter is

to reduce the computation needed in order for Bob to evaluate the circuit.

3.1.3 Hardness assumption

This parameter focuses on improving the hardness assumptions of the garbling scheme

in order to guarantee stronger security.

12



3.2 Point-and-permute (1990)

k0
a||p1, k1

a||p01

k0
b ||p2, k1

b ||p02

k0
4||p4, k1

4||p04

k0
c ||p3, k1

c ||p03

w1

w2

w3

Figure 3.1: The permutation bit appended to each label

Notice that for each gate Bob has to decrypt four ciphertexts when in reality he

only needs to decrypt one. Point-and-permute, introduced by Beaver, Micali and

Rogaway in [2] greatly improves the evaluation process from having to decrypt the

four ciphertexts to having to decrypt only the necessary one per gate.

The way they accomplish this is by associating for the two labels in each wire wi

two random permutation bits pi and p0i such that one of the two is 1 and the other is

0, i.e., pi = r and p0i = 1�r, where r 2 {0, 1} is chosen randomly. Then, they append

this permutation bit to each label in the gate as in Figure 3.1. The elegant reason

for this is that now the four possible labels per gate have four di↵erent orderings.

For example, for input wires wa and wb say Alice creates as usual the four labels k0
a,

k1
a, k

0
b , and k1

b . Let’s say she appends the random permutation bit to each label to

give k0
a||0, k1

a||1, k0
b ||1, and k1

b ||0 (notice that the two labels for each wire must have a

di↵erent permutation bit). The key feature now is that we can establish a canonical

ordering for the labels Bob receives. Alice states that if Bob sees two 0s in the two

labels, then he must decrypt the first ciphertext he gets. If he receives a 0 and a 1 he

must decrypt the second ciphertext, and so on. More generally, when Bob receives

the labels ki
a||↵ and kj

b ||� he will only decrypt the ciphertext in position 2↵ + �.

In his talk at the Simons institute, Mike Rosulek from Oregon State University

gives a less dense demonstration of how one can think about point-and-permute which

13



Optimization
Size per gate

Calls to H per gate
Alice Bob

XOR AND XOR AND XOR AND
Classical 4 4 4 4 4 4

Point-and-permute 4 4 4 4 1 1

Table 3.1: Comparison of all optimizations so far

is worth showing. Instead of thinking it as permutation bits, give the two labels in

each wire two di↵erent colors: blue and red (in a random order) like in Figure 3.2.

k0
a|| , k1

a||

k0
b || , k1

b ||

k0
4|| , k1

4||

k0
c || , k1

c ||

w1

w2

w3

Figure 3.2: Coloring the circuit

In Alice’s world, blue always comes before red, so her natural ordering would be

{ , , , }. Now for example, if Bob receives two labels where the colors are (in

order) blue and red, he will only evaluate the second ciphertext.

So far, we can see in Table 3.1 the size per gate of each method and the number

of ciphertexts to send/evaluate.

3.3 Garbled Row Reduction 3 (1999)

Up until now, every label ki
a was chosen as a random key. But Naor, Pinkas and

Sumner in [11] propose to choose the labels in a di↵erent manner. We can illustrate

their optimization with an example. Take the gate to be Figure 3.3 and take its

corresponding ordered encrypted truth table in Table 3.2. Now take the first element

in this table, i.e., Enc(k1a,k0b )(k
0
c || ). Instead of sending this ciphertext to Bob, we can
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Order Encrypted Output

Enc(k1a,k0b )(k
0
c || ) = 0n

Enc(k1a,k1b )(k
1
c || )

Enc(k0a,k0b )(k
0
c || )

Enc(k0a,k1b )(k
0
c || )

Table 3.2: Ordering of Garbled Table for Figure 3.3

just choose k0
c cleverly to be the label such that when encrypted under the key (k1

a, k
0
b )

will give 0n, the zero N -bit integer. In other words, we set k0
c = Enc�1

(k1a,k
0
b )
(0n). When

Bob and Alice agree to this, then it is not necessary for Alice to transmit the first

row in the table, because the only thing Bob needs to do is to conclude that if he gets

, then the ciphertext is 0n.

We have reduced the problem to sending 3 rows instead of 4, hence its name

Garbled Row Reduction 3 (GRR3). We will see later on that one construction sends

only 2 rows, GRR2.

k0
a|| , k1

a||

k0
b || , k1

b ||

k0
c || , k1

c ||
w1

w2

w3

Figure 3.3: Example gate to illustrate Garbled Row Reduction 3

3.4 Free XOR (2008)

In the spirit of GRR3, instead of choosing purely random labels for each gate,

Kolesnikov and Schneider in [8] propose to relate the labels for each gate in a dif-

ferent manner. The main optimization they achieve is the ability to compute XOR

gates “for free”, i.e., without the need for Bob to decrypt anything. The way they

accomplish is the following:
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Fix a random R 2 {0, 1}n, and as usual choose the input labels k0
↵ randomly,

i.e., choose the label corresponding to 0 randomly for each input wire in every gate.

Now, however, don’t choose k1
↵ randomly, but set it to be k1

↵ = k0
↵ � R. Finally, set

the output label for 0 to be k0
c = k0

a � k0
b . Graphically, we have something like in

Figure 3.4:

k0
a, k

0
a �R| {z }
k1a

k0
b , k

0
b �R| {z }
k1b

k0
a � k0

b| {z }
k0c

, k0
c �R| {z }
k1c

w1

w2

w3

Figure 3.4: XOR gates for free

The beauty of this is that the two labels Bob receives from Alice, say ki
a and kj

b ,

result in the correct output label when XORed together. In other words, Bob doesn’t

need to decrypt anything, he just needs to XOR the two labels he receives to get the

output label. This internally works by the semantics of XOR. We can try to XOR

each pair and see what happens:

k0
a � k0

b = k0
c (by definition)

k0
a � k1

b = k0
a � (k0

b �R) = (k0
a � k0

b )�R = k0
c �R = k1

c

k1
a � k0

b = (k0
a �R)� k0

b = (k0
a � k0

b )�R = k0
c �R = k1

c

k1
a � k1

b = (k0
a �R)� (k0

b �R) = (k0
a � k0

b )� (R�R) = k0
a � k0

b = k0
c

Note this optimization invites the boolean circuit to have as many XOR gates as

possible.

3.4.1 Formalizing FreeXOR

We now follow Kolesnikov and Schneider’s formal definition of the optimization.
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• Algorithm 1 (Construction):

1. Randomly choose a global o↵set R 2 {0, 1}N .

2. For each input wire Wi of the circuit C

a) Choose the label to be w0
i = k0

i ||p0i 2 {0, 1}N+1, where both k0
i , the

key, and p0i , the permutation bit, are chosen at random.

b) Set the other label to be w1
i = k1

i ||p1i = k0
i �R||p0i � 1.

3. For each gate Gi of C in topological order

a) if Gi is an XOR gate with output label wc = XOR(wa, wb) and with

input labels w0
a = k0

a||p0a, w0
b = k0

b ||p0b , w1
a = k1

a||p1a, w1
b = k1

b ||p1b :
i. Set the output label w0

c = k0
a � k0

b ||pa � pb.

ii. Set the output label w1
c = k0

a � k0
b �R||pa � pb � 1.

b) Otherwise, if the gate is not XOR:

i. Randomly choose the output label w0
c = k0

c ||pc 2 {0, 1}N+1.

ii. Set the output label w1
c = k0

c �R||pc � 1.

iii. Create Gi’s garbled table. That is, for each of the 4 possible

combinations of input values va, vb 2 {0, 1}, set

eva,vb = H(kva
a ||kvb

b ||i)� wgi(va,vb)
c

Sort the entries in the garbled table according to the point-and-

permute technique, i.e., entry eva,vb in position 2pa + pb.

• Algorithm 2 (Evaluation):

1. For each input wire Wi of C receive the corresponding garbled value wi =

ki||pi.

2. For each gate Gi in the topological order given by the labels

a) If Gi is an XOR gate with garbled input values wa = ka||pa and wb =

kb||pb, then compute wc = ka � kb||pa � pb.

b) Otherwise, decrypt garbled output value from the garbled table entry

e in position 2pa + pb as

wc = kc||pc = H(ka||kb||i)� e
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With these two algorithms we are in a position to define the protocol.

Protocol:

• Inputs: Party P1 has private input x = (x1, x2, ..., xu1) 2 {0, 1}u1 and party P2

has private input y = (y1, y2, ..., yu2) 2 {0, 1}u2 .

• Auxiliary input: A boolean acyclic circuit C that evaluates the desired func-

tion f .

• Steps of the protocol:

1. P1 constructs the garbled circuit using Algorithm 1 and sends the garbled

tables to P2.

2. Let W1, ...,Wu1 be the circuit input wires for x, and similarly let Wu1 +

1, ...,Wu1+u2 be the circuit input wires for y. Then:

a) P1 sends P2 the garbled values wx1
1 , ..., w

xu1
u1 .

b) For every i 2 {1, ..., u2}, P1 and P2 execute a 1-2 oblivious transfer

protocol where P1’s input is (k0
u1+i, k

1
u1+i) and P2’s input is yi. Note

that all the instances of 1-2 oblivious transfer can be run in parallel,

a useful optimization when implementing garbled circuits.

3. P2 now has the garbled tables and the labels, so he can run Algorithm 2

and output f(x, y).

3.4.2 Intuition of Security

The main idea is that Algorithm 1 uses H as a one-time pad to encrypt the garbled

output values in the garbled tables (this corresponds to step 3.b.iii). Since any com-

bination of H’s inputs is used for encryption of at most one table entry, then this

indeed acts as a one-time pad. Lastly, since the evaluator of the garbled circuit only

knows one garbled label per wire, he can decrypt exactly one entry of Gi’s garbled

table. All other entries are encrypted with a key he can not evaluate. Therefore, as

Kolesnikov explains, one of the two garbled values of every wire will look random to

him.
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wa wb wc

0 0 0
0 1 0
1 0 0
1 1 1

Table 3.3: An example of an odd gate (AND)

wa wb wc

0 0 0
0 1 1
1 0 1
1 1 0

Table 3.4: An example of an even gate (XOR)

3.5 Garbled Row Reduction 2 (2009)

The main idea proposed in [12] is to use polynomial interpolation by Alice and Bob

to identify using only two ciphertexts the proper output labels. We need to divide

two cases for this optimization: odd gates and even gates. Odd gates are those that

have as possible output three same truth values (e.g. Table 3.3), while even gates are

those that have two true values and two false values (e.g. Table 3.4).

3.5.1 Odd Gates

The idea works as follows. We first create four keys corresponding to labels that will

output 0n when encrypted under each pair of input labels. In other words, we set

K1 = Dec(k0a,k0b )(0
n)

K2 = Dec(k0a,k1b )(0
n)

K3 = Dec(k1a,k0b )(0
n)

K4 = Dec(k1a,k1b )(0
n)

For an AND gate, Alice will decide that K4 corresponds to the label k1
c , while the

other three keys correspond to k0
c (for an OR gate we would set K1 to correspond
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P (0)

K1

K2
K3

K4 P (5)

P (6)

Q(0)

x

y

Figure 3.5: GRR2 for AND gate. Note that although the graph uses real numbers,
GRR2 uses a finite field.

with k0
c , and the other three with k1

c ). If we continue the example of an AND gate,

Alice will take K1, K2 and K3 and perform polynomial interpolation over F2n with

the points (1, K1), (2, K2) and (3, K3). This will yield a unique quadratic polynomial

P (X) that passes through these points. We now interpolate again another polynomial

Q(X) that passes through the points (4, K4), (5, P (5)) and (6, P (6)). Finally, Alice

chooses the output labels as k0
c = P (0), and k1

c = Q(0) and sends P (5) and P (6) as

part of the garbled gate to Bob.

As for Bob, he will as usual receive ki
a and kj

b . He can hence calculate using these

two labels one of the four Ki. Say for instance he receives k0
a and k1

b , then he will

calculate K2. Now that he has K2, P (5) and P (6), he will perform his polynomial

interpolation R(X) with the points (2, K2), (5, P (5)) and (6, P (6)). But notice that

if he evaluates his polynomial at 0 he will get P (0) as R(0) = P (0) = k0
c . Similarly,

if Bob receives k1
a and k1

b , he will get K4 and then R(0) = Q(0) = k1
c (see Figure 3.5
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for a graphical representation).

This method reduces the evaluation of an AND gate to two ciphertexts (we only

have to send P (5) and P (6)).

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

P (0)

K1

K2

K3

K4

P (5)

Q(5)

Q(0)

x

y

Figure 3.6: GRR2 for an XOR gate.

3.5.2 Even Gates

Suppose now the gate is an XOR gate, so its parity is even. In this case, Alice would cre-

ate a linear polynomial P (X) that passes through the points (1, K1) and (4, K4), and

another linear polynomial Q(X) that passes through the points (2, K2) and (3, K3).

She would then set k0
c = P (0) and k1

c = Q(0). Finally, she would send Bob P (5) and

Q(5), making sure that P (5) is the first entry of the table, while Q(5) is the second.

This will aid Bob in knowing which point to choose to interpolate his polynomial.

Bob, now in possession of say k0
a, k

1
b , P (5), and Q(5), first recovers K2 and in-

terpolates the linear polynomial Q(X) at (2, K2) and (5, Q(5)). Once he finds out
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Q(X), he simply evaluates it at X = 0, i.e., k1
c = Q(0).

3.5.3 Experimental Results

Before GRR2, all optimizations were theoretical in nature. In this paper the authors

not only propose the optimization, but implement it using their Fairplay system.

While we will go into the details of the implementation on the next chapter, it is

worth highlighting the speed at which garbled circuits can evaluate secure two-party

computation.

• Example 1 - Evaluation of a Simple Circuit: The output chosen for this

circuit is the number of 1s in the string obtained from performing a bitwise AND

between two 32 bit strings; one supplied by Alice and one by Bob. This circuit

has 689 gates, and the calculations were performed on two machines with Intel

Core 2 Duos 3.0 GHz, 4GB of RAM connected by a 1GB Ethernet. The hash

function used was SHA-256.

Method Total Time Total KBytes
Without GRR2 2s 46
With GRR2 1s 34

Table 3.5: Time to evaluate a simple circuit

• Example 2 - Evaluating AES: The circuit of this example computes an AES

encryption of a 128-bit block given a 128-bit key. Alice’s input is the key, while

Bob’s input is the message block.

Method Precomp. Time Send Time OT Time Calc. Time Total KBytes
No GRR2 5s 2s 4s 3s 14s 3162
GRR2 5s 1s 3s 3s 12s 1752

Table 3.6: Time to evaluate AES

We now have an updated Table 3.7 showing a comparison between the optimiza-

tions mentioned.
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Optimization
Size per gate

Calls to H per gate
Alice Bob

XOR AND XOR AND XOR AND
Classical 4 4 4 4 4 4

Point-and-permute 4 4 4 4 1 1
GRR3 3 3 4 4 1 1

FreeXOR 0 4 0 4 0 1
GRR2 2 2 4 4 1 1

Table 3.7: Comparison of all optimizations so far

3.6 FleXOR (2014)

FleXOR, or flexible XOR, was introduced by Kolesnikov, Mohassel and Rosulek in

[7] in 2014. Consider the following XOR gate in Figure 3.7.

k0
a, k

0
a �R1| {z }

k1a

k0
b , k

0
b �R2| {z }

k1b

k0
c , k

0
c �R3| {z }

k1c

w1

w2

w3

Figure 3.7: XOR gate with di↵erent o↵sets

Notice that the true label for wire i is an o↵set Ri of the false label. Ideally, we

would want the o↵set of the three wires to be the same to apply FreeXOR. In other

words, we would want in Figure 3.7 for R1 = R2 = R3. Unfortunately, most of the

times these o↵sets will be distinct. What Kolesnikov, Mohassel and Rosulek propose

is to transform R1 and R2 into R3.

The way they accomplish this is by first selecting random “translated” labels k̃0
a
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and k̃0
b . Then, they garble the gate with the following four ciphertexts:

Enck0a(k̃
0
a)

Enck0a�R1(k̃
0
a �R3)

Enck0b (k̃
0
b )

Enck0b�R2
(k̃0

b �R3)

Clearly the first two ciphertexts allow Bob to translate the true/false labels for

wire a with an undesired o↵set into true/false labels with a desired o↵set. In other

words, he converts R1 into R3 and as a byproduct he therefore changes k0
a into k̃0

a.

Similarly, the last two ciphertexts change R2 into R3 and k0
b into k̃0

b . While this does

indeed work, notice that Alice still needs to send four ciphertexts to Bob per XOR

gate, much worse than the previous optimization (GRR2) which sent only two. What

the authors propose is to apply the GRR3 trick and set both the first ciphertext

Enck0a(k̃
0
a) and the third ciphertext Enck0b (k̃

0
b ) to be the 0n ciphertexts. In other

words, k̃0
a = Enc�1

k0a
(0n) and k̃0

b = Enc�1
k0b
(0n). We therefore improve the garbled table

as follows:

Enck0a(k̃
0
a)

Enck0a�R1(k̃
0
a �R3)

Enck0b (k̃
0
b )

Enck0b�R2
(k̃0

b �R3)

Furthermore, the optimization doesn’t stop there, since it might be possible that

R1 = R3 from the beginning, or R2 = R3, or even better, R1 = R2 = R3, which

would correspond to the FreeXOR case. In fact, if R1 = R3, there is no need to

send the first two ciphertexts, allowing the evaluation of an XOR gate with only one

ciphertext (similarly if R2 = R3). This is precisely why the authors call their method

flexible XOR; an XOR gate can be evaluated with 0, 1, or 2 ciphertexts depending on

the nature of R1, R2 and R3.

The novelty of this optimization was not particularly on the low size of the garbled

table (after all, FreeXOR requires zero ciphertexts), but rather on the compatibility
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it gives with other optimizations. GRR2 is incompatible with FreeXOR as the o↵sets

of the labels in GRR2 are unpredictable while FreeXOR needs a constant o↵set.

However, GRR2 is compatible with FleXOR, as FleXOR doesn’t need a constant

o↵set, it can adapt.

k0
a, k

0
a �R1| {z }

k1a

k0
b , k

0
b �R2| {z }

k1b

k0
c , k

0
c �R3| {z }

k1c

w1

w2

w3

Two ciphertexts required

k0
a, k

0
a �R3| {z }

k1a

k0
b , k

0
b �R2| {z }

k1b

k0
c , k

0
c �R3| {z }

k1c

w1

w2

w3

One ciphertext required

k0
a, k

0
a �R1| {z }

k1a

k0
b , k

0
b �R3| {z }

k1b

k0
c , k

0
c �R3| {z }

k1c

w1

w2

w3

One ciphertext required

k0
a, k

0
a �R3| {z }

k1a

k0
b , k

0
b �R3| {z }

k1b

k0
c , k

0
c �R3| {z }

k1c

w1

w2

w3

No ciphertexts required

Figure 3.8: Possible scenarios for FleXOR

3.6.1 Experimental Results

The authors test their optimization with various functions. In particular, they cal-

culate the Hamming distance between two bit strings, AES, and SHA-256, and the

results can be seen in Table 3.8.
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circuit GRR2 FreeXOR FleXOR
AES 2 0.64 0.72

SHA-256 2 2.05 1.56
Hamming distance 2 0.50 0.50

Table 3.8: Comparison of GRR2, FreeXOR, and FleXOR. The number in each cell
represents the average number of ciphertexts per gate.

Clearly FreeXOR performs best when the number of XOR gates in the circuit is very

high, suggesting AES is a heavily XOR oriented circuit. What would be interesting to

find is what is the optimal ratio of XOR to AND gates that makes FleXOR works best.

This isn’t trivial to find, as after all the labels of the circuit are not deterministic,

making it di�cult to calculate how many times the garbled table will require zero,

one, or two ciphertexts. The authors claim, based on their experimental results, that

the average ciphertexts per XOR gate is one ciphertext. Although not an exhaustive

result, it might be indicative of how many ciphertexts are needed on average for XOR

gates using FleXOR.

3.7 Half Gates (2015)

We are now in a position to introduce the state-of-the-art in garbled circuits. This

technique was introduced by Zahur, Rosulek, and Evans in [16] in 2015. The last

technique made XOR gates cost either 0, 1, or 2 ciphertexts, while this one makes AND

gates cost two ciphertexts and XOR gates zero ciphertexts. It does this by eliminat-

ing the need for GRR2 and creating a new method to evaluate AND gates with two

ciphertexts in a way that is compatible with FreeXOR.

3.7.1 Half Gates

Before explaining the optimization we need some terminology. We define a half gate

as an AND gate for which one of the parties knows one of the inputs (not privately, but

out in the public). Say we want to compute c = a ^ b. Let k0
a, k

0
a �R, k0

b and k0
b �R

be the input labels for the AND gate to evaluate, and let k0
c and k0

c �R correspond to

the output labels. We distinguish two cases:
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• Case 1: Alice, the garbler, knows one of the inputs. If the input Alice knows is

false, then she will simply garble a unary gate that always outputs false (indeed,

F ^ ⇤ = F ). If, however, the input Alice knows is true, then she will simply

garble a unary identity gate. Hence, Alice will produce two ciphertexts:

c1 = H(k0
b )� k0

c

c2 = H(k1
b )� k0

c � aR

where H is a suitable hash function and a is the input bit Alice knows. These

two ciphertexts are then permuted according to k0
b ’s point-and-permute bit.

Bob, on receiving the two ciphertexts, takes a hash of the secret label he wants

and decrypts the appropriate ciphertext.

– a = 0: then he will be able to recover C. This is trivial; if he receives

k1
b = k0

b � R and along with it c2, he will perform c2 �H(k1
b ) = H(k1

b ) �
k0
c � 0 · R � H(k1

b ) = k0
c . If he receives k0

b and along with it c1, he will

perform c1 �H(k0
b ) = H(k0

b )� k0
c �H(k0

b ) = k0
c .

– a = 1: Bob will be able to recover either k0
c or k1

c depending on his secret

bit b. Recall that Alice garbled a unary identity gate, so if b = 0, then

Bob will recover k0
c , and if b = 1, Bob will recover k1

c . The reason is

similar to the previous case. If Bob has b = 0 and therefore k0
b , then

c1 �H(k0
b ) = H(k0

b )� k0
c �H(k0

b ) = k0
c . If Bob has b = 1, then he has k1

b ,

and we have c2 �H(k1
b ) = H(k1

b )� k0
c � 1 ·R�H(k1

b ) = k0
c �R = k1

c .

Alice still sends two ciphertexts, but she can drop the first one by applying the

GRR standard trick, making the first ciphertext be the all zeros ciphertext. In

total, this half gate was evaluated with only one ciphertext. On the downside,

Alice needed to call H twice and Bob H once.

• Case 2: Bob, the evaluator, knows one of the inputs. Let’s say we want to

compute c = a ^ b and Bob knows the value of a at the time of evaluation. If

a = 0, Bob should somehow be able to derive k0
c , and if a = 1, then Bob should

be able to derive k0
c if b = 0, and k1

c if b = 1. However, what the authors note is

that in the case a = 1, then it is su�cient for Bob to receive � = k0
c � k0

b . The
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reason is that once Bob receives the secret label for wire b (either k0
b or k1

b ), he

can XOR � with b’s secret label to obtain either k0
c or k1

c . More precisely, if Bob

obtains via OT k0
b , then �� k0

b = k0
c � k0

b � k0
b = k0

c . Similarly, if Bob obtains

k1
b , then �� k1

b = k0
c � k0

b � k1
b = k0

c � k0
b � k0

b �R = k0
c �R = k1

c .

Therefore, Alice will provide the following two ciphertexts:

c1 = H(k0
a)� k0

c

c2 = H(k1
a)� k0

c � k0
b

– a = 0: Then Bob uses k0
a to decrypt the first ciphertext. He will take the

hash of k0
a and XOR it with the first ciphertext. We thus have H(k0

a)� c1 =

H(k0
a)�H(k0

a)� k0
c = k0

c .

– a = 1: Then Bob uses k1
a = k0

a � R to decrypt the second ciphertext. He

will take the hash of k1
a and XOR it with the second ciphertext. We thus

have H(k1
a)� c2 = H(k1

a)�H(k1
a)� k0

c � k0
b = k0

c � k0
b = �. Once we have

�, we refer to the previous discussion on how to obtain the output labels.

As in the previous case, there is no need to send two ciphertexts. Using GRR,

we can set c1 to be the all zeros ciphertext. By the properties of XOR, this means

we set k0
c = H(k0

a). The cost of garbling this half gate is the same as above:

Alice calls H twice and Bob once.

3.7.2 Putting it all together

Or, as the authors subtly state, two halves make a whole. Consider the general case

where Alice wants to garble an AND gate c = a^b and no inputs are public to anybody.

Essentially this optimization relies on the following identity:

a ^ b = a ^ (0� b)

= a ^ ((r � r)� b)

= (a ^ r)� (a ^ (r � b))
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Suppose Alice chooses a uniformly random bit r. We are thus in Case 1 for the

half gate (a ^ r). If now we set up the scheme so that Bob learns r � b, we are in

Case 2 for the half gate (a^ (r� b)). As the authors state, there is no need to worry

about letting Bob know r� b, as it doesn’t detail any information about b. The final

XOR between the two half gates is free, so the total cost of the two half gates is two

ciphertexts.

Furthermore, it is possible for Bob to learn r� b without any overhead. The way

to do so is by encoding the wire label for b to have as a point-and-permute bit r� b.

In other words, send via OT ki
b||b� r.

In total, an AND gate was garbled with two ciphertexts, one XOR call, Alice calling

H four times, and Bob calling H twice. Of course, this optimization doesn’t just

apply to AND gates but rather any odd gate such as OR, NAND, etc.

3.7.3 Experimental Results

As in FleXOR, the authors test their optimization with various functions. In partic-

ular, they calculate again the Hamming distance between two bit strings, AES, and

SHA-256, and the results can be seen in Table 3.9.

circuit GRR2 FreeXOR FleXOR Half Gates % decrease
AES 2 0.64 0.72 0.42 33%

SHA-256 2 2.05 1.56 1.37 12%
Hamming distance 2 0.50 0.50 0.33 33%

Table 3.9: Comparison of GRR2, FreeXOR, FleXOR, and Half Gates. The number
in each cell represents the average number of ciphertexts per gate.

We can clearly see that this optimization performs better in all cases, as it only

requires two ciphertexts for AND and zero for XOR. We can update the comparison

table to include the latest optimization in Table 3.10.

3.7.4 Lower Bounds on Garbled Circuits

A common pattern in all the optimizations seen is the reduction of the size of the

garbled table Alice has to send to Bob. A natural question that follows is whether
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Optimization
Size per gate

Calls to H per gate
Alice Bob

XOR AND XOR AND XOR AND
Classical 4 4 4 4 4 4

Point-and-permute 4 4 4 4 1 1
GRR3 3 3 4 4 1 1

FreeXOR 0 4 0 4 0 1
GRR2 2 2 4 4 1 1
FleXOR {0, 1, 2} 2 {0, 2, 4} 4 {0, 1, 2} 1

Half Gates 0 2 0 4 0 2

Table 3.10: Comparison of all optimizations so far

this can go on until everything is “free”, i.e., achieving a compatible FreeXOR and

FreeAND, so to speak. The authors investigate this question, and come up with

interesting conclusions.

3.7.4.1 Linear Garbling Schemes

The paper states that all garbling schemes proposed in the literature share certain

features, in particular the fact that both the Gb and Ev procedures use only linear

operations. For instance, let’s take a few optimizations to see their linearity:

• GRR2: This optimization requires interpolating polynomials on a finite field.

Since the number of points to interpolate is fixed, interpolation is a linear op-

eration.

• FreeXOR: The labels are chosen using XOR relationships, so clearly linear.

• Half Gates: Same idea as FreeXOR, the labels chosen are of the form H(k0
a)�

k0
c , so XOR is used and therefore linear.

Once this relationship has been established, the authors propose one of the major

theorems of the paper.

Theorem 1. Every ideally secure garbling scheme for AND gates that is linear must

have a garbled table of at least two ciphertexts.
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This theorem has big consequences for the research of optimizations of garbled

circuits. In fact, it proves that their method is optimal for linear schemes. An

improvement in the size of the garbled table will have to be achieved through non-

linear methods.

3.8 Garbled Gadgets

The problem with all the optimizations explained so far is that they are very tied

in to fan-in 2 gates, i.e., two input wires and one output wire. While that is fine

for a number of applications (e.g. calculating Hamming distance, AES, etc.), other

applications that are cumbersome and expensive to express with fan-in 2 gates are

poorly suited for garbled circuits. Some examples of applications not suited with

current optimizations are for instance a neural-network-based classifier, or arithmetic

computations. In fact, arithmetic computations are done for free in secret sharing

based schemes, so there is no practical reason to choose garbled circuits over the

secret sharing scheme.

Therefore, the paper written by Ball, Malkin, and Rosulek titled Garbling Gadgets

for Boolean and Arithmetic Circuits [1] addresses these problems and proposes new

solutions supporting high fan-in gates.

3.8.1 Improvements

Let � be the security parameter for the scheme, that is, how many bits each label has

(typically this will be 128-256 bits). The paper o↵ers the following improvements:

• Linear operations in arithmetic circuits: The scheme they propose allows

addition and multiplication by a public constant for free. This is typical of

secret sharing schemes, but now with the ability of garbled circuits to o↵er

arithmetic operations and the advantage they have over secret sharing schemes

in the fact that they have constant-round protocols makes it an arguably better

rounded option for secure computation.

Previously, other garbled circuit schemes would represent integers in binary and

would need O(�l) to add two l-bit numbers. Now it is essentially for free.
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• Other arithmetic operations: The scheme not only supports addition and

multiplication, but also exponentiation by a public power with a cost indepen-

dent of the exponent.

• High fan-in boolean threshold gates: For fan-in b gates, this scheme re-

quires O(� log3 b) bits, while current schemes are exponentially worse.

3.8.2 Generalizing FreeXOR

3.8.2.1 Addition

The main idea is to provide free addition mod m for any fixed m (when m = 2, this

will just be FreeXOR). Assume the wire labels we have been working on as bits are

now vectors of Zm. Previously there was only two labels per gate, but now there is

m labels per gate. Therefore, the label kx
a encoding x 2 {0, 1, ...,m} will equal

kx
a = k0

a + xR

where now addition refers to component-wise addition, R is a random vector in

Zm, and xR is multiplication by a constant as in vector spaces. With this it now

follows that we can get addition mod m for free. Indeed, we have that

kx
a + ky

b = k0
a + xR + k0

b + yR = (k0
a + k0

b ) + (x+ y)R

3.8.2.2 Multiplication by a constant

This is a similar approach to addition. Indeed, let c 2 Zm be a known constant, then:

ckx
a = c(k0

a + xR) = ck0
a + (cx)R

where again the operations are component-wise mod m. Note this works provided c is

prime to m. While we won’t go into details as to why this is the case, the intuition is

primarily that when c is prime to m the wire label preserves its uniform distribution.

Simply, c and m not being coprime can lead to security issues.
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3.8.3 Generalizing Point-and-Permute

As in the original point-and-permute, instead of appending a bit to each wire label

we now append an element x 2 Zm and we append 1 2 Zm to R. Let ⌧m(ka) denote

the last component of a wire label. Then we have:

⌧m(k
x
j ) = ⌧m(k

0
j ) + x · ⌧m(R) = ⌧m(k

0
j ) + x · 1 = ⌧m(k

0
j ) + x

As the authors state, each wire label out of the m possible wire labels is a assigned

a random cyclic shift of the set Zm, where the shift is determined by where ⌧m(k0
j )

goes in Zm.

3.9 Focusing on optimizing AND gates

The quest for a FreeAND has been highly sought after following Kolesnikov and

Schneider’s FreeXOR in 2008. GRR3 required Alice to send 3 ciphertexts, GRR2

required two (but was incompatible with FreeXOR), and finally half gates required

two ciphertexts and was compatible with FreeXOR.

Hence, unfortunately, each optimization breaks FreeXOR (i.e. they are incom-

patible), or the optimization only reduces the problem to sending 2 ciphertexts. The

natural question is then, is there an optimization that requires 0 ciphertexts and is

compatible with FreeXOR? From the last section we know that in their Two Halves

make a Whole, Rosulek et al. state that this is impossible in a linear sense. They

give a lower bound of two as to the number of ciphertexts required to send to Bob to

evaluate an AND gate if the scheme uses are using linear techniques.

There are two main problems with finding FreeAND. The first is that since group

operations are linear (e.g. FreeXOR is simply C2 ⇥ C2 ⇥ ... ⇥ C2 where C2 is the

cyclic group of order two) then finding FreeAND must combine more than a group

operation. The second problem, and a big one at that, is that it must be compatible

with FreeXOR. That’s a big rock researchers have tripped over in the last few years.

For instance, GRR2 gave optimal conditions to evaluate AND gates, but in the process

broke XOR gates to two ciphertexts per gate.
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With all of these constraints, we are essentially looking for a function f : {0, 1}n⇥
{0, 1}n ! {0, 1}n such that

f(k0
a, k

0
b ) = k0

c

f(k0
a, k

0
b ) = k0

c

f(k1
a, k

1
b ) = k0

c

f(k1
a, k

1
b ) = k1

c

for k0
c , k

1
c 2 {0, 1}n where ki

a 6= kj
b 6= kl

c. Furthermore, we need it to be compatible

with FreeXOR, so we impose an additional constriction that

k1
a = k0

a � S

k1
b = k0

b � S

k1
c = k0

c � S

for some random element S 2 {0, 1}n.

3.9.1 An (almost) successful approach

The first issue to overcome before thinking of compatibility is finding a scheme that

is not linear. If the group C2 (addition modulo 2) is not enough, then why don’t we

try to take the commutative ring Z2? We now have two operations, addition and

multiplication, but more importantly, it wouldn’t be linear in the strict sense, since

not all elements of a ring have inverses (in fact, we will use that to our advantage).

Procedure:

Let f be bitwise AND, or in other words, multiplication in the commutative ring

Z2 ⇥ Z2 ⇥ ... ⇥ Z2 = (Z2)n = {0, 1}n. Now, randomly choose k0
a, k

0
b and some S like

in FreeXOR with the restriction on S that both k0
aS = k0

bS = 0 (notation: from now

on k0
ak

0
b means bitwise AND or multiplication on the Cartesian product of Z2, and 0

is the n bit 0 element in (Z2)n).

Set k1
a = k0

a � S, and k1
b = k0

b � S (note the similarities with FreeXOR; this is

what’s going to make it compatible later on). Now with all of this we have that:
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f(k0
a, k

0
b ) = k0

ak
0
b = k0

c

f(k0
a, k

1
b ) = k0

a(k
0
b � S) = k0

ak
0
b � k0

aS = k0
ak

0
b � 0 = k0

c

f(k1
a, k

0
b ) = (k0

a � S)k0
b = k0

ak
0
b � k0

bS = k0
ak

0
b � 0 = k0

c

And finally, since we need k0
c 6= k1

c , we have that

f(k1
a, k

1
b ) = (k0

a � S)(k0
b � S)

= k0
ak

0
b � k0

aS � k0
bS � S2

= k0
ak

0
b � 0� 0� S since S2 = S

= k0
ak

0
b � S

= k0
c � S

= k1
c

So as long as S 6= 0, then k0
c 6= k1

c . But even more than that, it is compatible with

FreeXOR! Indeed, notice that like in Equation 1, we have set

k1
a = k0

a � S

k1
b = k0

b � S

k1
c = k0

c � S

(3.1)

so the output of an AND gate can be pipelined with the input of an XOR gate to perform

FreeXOR.

3.9.2 Problems

Unfortunately, this approach has some challenges it needs to overcome.

3.9.2.1 On finding the right S

Unlike FreeXOR, S is not totally random, as it has to be an element such that

when multiplied by the zero labels will yield 0. Furthermore, there is an inherent

danger with S and multiplication. On the one side, we need S to be di↵erent from

0. Without this, we would have that k0
c = k1

c and then Bob doesn’t know the output
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of the boolean gate. On the other side, if we require k0
aS = k0

bS = 0, a bit in S in

position i can be 1 only if both k0
a and k0

b have a 1 in position i. For example, say

k0
a = 0101010 and k0

b = 1100101. Then S is forced to be S = 010000. This is an

unfortunate consequence of multiplication, as 3/4 of the times multiplication yields

0.

A way to overcome this, however, is to have k0
a and k0

b agree upon at least having

m 1s in m di↵erent positions in the bit string. Back to our previous example, when

Alice generates k0
a and k0

b , she can privately say that on positions 2, 4, and 7 k0
a and

k0
b must have a 1. After that, they can be random, as in the equation below:

k0
a = ⇤1 ⇤ 1 ⇤ ⇤1 ! 0111011

k0
b = ⇤1 ⇤ 1 ⇤ ⇤1 ! 1101001

S = 0101001

making S more balanced.

3.9.2.2 Generalizing to a Circuit

Up until now, we have been posing the problem and solution with only one gate in

mind. However, we need to generalize to a circuit. Suppose we have the following

circuit as in Figure 3.9 where we have set up everything accordingly so that k0
aS1 =

k0
bS1 = 0 and k0

dS2 = k0
eS2 = 0. Then, the final gate will not work. The problem is

that we don’t have necessarily that k0
c (k

0
f � S2) = k0

ck
0
f � k0

cS2 = k0
ck

0
f .

How do we solve this? We don’t create our Si per gate, but rather globally, as

Kolesnikov and Schneider do in FreeXOR. In other words, we find an S such that

k0
aS = k0

bS = k0
dS = k0

eS = 0. With this approach, the previous problem is solved,

but the constraints posed on S gets bigger.

3.9.3 Questions

With all of this, the two big questions to investigate are:
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k0
a, k

0
a � S1

k0
b , k

0
b � S1

k0
c , k

0
c � S1

k0
d, k

0
d � S2

k0
e , k

0
e � S2

k0
f , k

0
f � S2

w1

w2

w3

w4

Figure 3.9: Di↵erent S in a circuit

1. Will imposing 1s on the input false labels make it insecure? In other words, if

Alice secretly puts a 1 in m di↵erent positions on k0
a, k

0
b , ..., can Bob use this to

his advantage to leak Alice’s input?

2. What happens when a circuit becomes really big? In their Fairplay System,

Nigel Smart et al. build a compiler that has 30,000 gates. That means that

there is 60,000 false input labels (i.e. k0
a, k

0
b , k

0
c , ...). Assuming that we need a

global S such that k0
aS = k0

bS = ... = 0, then it’s practically impossible for S

to be non-zero. As we mentioned before, can we globally agree to have 1s in

certain positions in the labels? Is this secure? How many agreements do we

need for it to be secure?

3.9.4 Answers

1. Unfortunately, posing the false labels to have m di↵erent 1s leaks information

about Alice’s input. Indeed, Bob can break the security of the protocol as

follows:

i) Bob simply chooses to receive via OT the true label k1
b .

ii) We now distinguish the two possible cases:
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• Alice sends k0
a: In which case, Bob XORs the two input labels k0

a�k1
b =

k0
a � k0

b � S. As both the two input labels have 1s agreed upon on

m di↵erent positions, then XORing k0
a � k0

b will yield m di↵erent zeros.

This in turn implies k0
a � k0

b �S will have less 0s in the bit string than

k0
a � k0

b . Therefore, he can conclude based on the number of 0s in the

bit string whether Alice chose k0
a or k1

a.

• Alice sends k1
a: In which case, Bob XORs the two input labels k1

a�k1
b =

k0
a � S � k0

b � S = k0
a � k0

b . By the explanation above, if he sees much

more zeros than ones, he concludes Alice sent k1
a.

2. If the circuit becomes really big, then since we need k0
aS = k0

bS = ... = 0,

inevitably S ! 0. As we can’t have S = 0 (otherwise k0
c = k1

c ), and as we can’t

use what we proposed about imposing 1s on the false input labels, then this

scheme is not fit for a FreeAND.

3.9.5 Impossibility of FreeAND in a Ring

We now show a result we have found that demonstrates FreeAND is impossible to

achieve not only in a linear sense, but also on rings if we follow a FreeXOR approach.

Theorem 2. Let R be a non-commutative ring. Let every true label k1
↵ 2 R be

a function g of the false label k0
↵ 2 R as in FreeXOR, i.e., k1

↵ = g(k0
↵) for some

g : R ! R. Then there does not exist a function f : R⇥R ! R such that

f(k0
a, k

0
b ) = k0

c

f(k0
a, k

1
b ) = k0

c

f(k1
a, k

0
b ) = k0

c

f(k1
a, k

1
b ) = k1

c

for k0
↵, k

1
↵ 2 R with k0

↵ 6= k1
↵ for ↵ 2 {a, b, c}.

First of all, notice that for FreeXOR the function f chosen was f = �, and the

function g chosen was k1
↵ = g(k0

↵) = k0
↵ � S. In our unsuccessful approach, we chose

f = bitwise-AND, and we chose g as in FreeXOR.
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Proof. Suppose for a contradiction such a function f exists. For simplicity, denote

f(ki
a, k

j
b) = ki

ak
j
b . Then we have

k0
ak

0
b = k0

ak
1
b = k1

ak
0
b 6= k1

ak
1
b

Since each true label is a function of the false label, we then have that

k0
ak

0
b = k0

ag(k
0
b ) = g(k0

a)k
0
b 6= g(k0

a)g(k
0
b )

In particular, we have that

(g(k0
a)� k0

a)k
0
b = 0 8k0

a, k
0
b 2 R

Since this holds for any label in R, set k0
b ⌘ g(k0

b ) + k0
b . We then have that

(g(k0
a)� k0

a)k
0
b = 0

(g(k0
a)� k0

a)(g(k
0
b ) + k0

b ) = 0 by substitution

g(k0
a)g(k

0
b )� k0

ag(k
0
b ) + g(k0

a)k
0
b � k0

ak
0
b = 0

g(k0
a)g(k

0
b )�k0

ag(k
0
b ) + g(k0

a)k
0
b| {z }

=0

�k0
ak

0
b = 0

g(k0
a)g(k

0
b )� k0

ak
0
b = 0

But then g(k0
a)g(k

0
b ) = k0

ak
0
b , and therefore k0

c = k1
c , breaking the definition of f .

Therefore, such f doesn’t exist.
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Chapter 4

Implementation

In this chapter we propose Gabes, a new implementation to garbled circuits that

focuses on usability and ease-of-use instead of speed. Current implementations fo-

cus on speed instead of ease-of-use and simplicity. O↵ering an implementation that

concentrates on the latter has more pedagogical benefits to the user, as every part of

the implementation is out in the clear. The language of choice is Python instead of

current choices such as C or C++, making the code easier to understand and reason

about. Before we explain our implementation, we highlight some implementations

already published.

4.1 Other Implementations

• Fairplay: This was the first practical implementation of garbled circuits writ-

ten in [12]. Nowadays this implementation is obsolete, but it paved the way for

current implementations.

• FastGC: This library was implemented in Java as part of the authors’ paper

Faster Secure Two-Party Computation Using Garbled Circuits [6]. The main

contribution they give to the implementation of garbled circuits is the concept of

Pipelined Circuit Execution. What they note is that previous implementations

such as Fairplay loaded the whole garbled circuit into memory. However, this

is not strictly necessary as the circuit can be evaluated per topographical level.

Therefore, each gate is sent to the evaluator as soon as it is garbled, eliminating
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the bottleneck of having to wait for the whole circuit to be garbled before

sending it to the evaluator.

• JustGarble: This implementation developed at the University of California,

San Diego along the paper [3] o↵ers general optimizations to both garble and

evaluate the circuit. They introduce a circuit representation called Simple Cir-

cuit Description (SCD) to handle the circuit. The name for the project comes

from the idea that garbled circuits should not be a component for secure multi-

party computation, but rather a goal on its own, the idea of just garbling.

• Obliv-C: Another implementation developed at the University of Virginia in

the paper [15] that acts as an extension to the C programming language.

4.2 Gabes

We now introduce the various aspects that compose Gabes. For a more detailed

explanation and usage of the library, see the Appendix for the whole documentation.

4.2.1 Oblivious Transfer

One of the bottlenecks of garbled circuits is the 1-out-of-2 oblivious transfer protocol

that must occur for each input wire the evaluator supplies. The OT protocol we

implement in Gabes is based on RSA and works as follows:

1. The garbler is owner of the two possible messages (or labels) m0 and m1. He

will send one of the two to the evaluator, but he will not know which one.

2. The garbler generates an RSA key-pair with public key (e,N) and private key

(p, q, d).

3. The garbler generates two random numbers in the range (0, N) denoted by x0

and x1.

4. The garbler sends to the evaluator both x0 and x1 as well as his public key.

5. The evaluator chooses which message he will like to receive based on his bit b.
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6. He generates a random k 2 (0, N) and blinds xb by sending to the garbler the

value v = (xb + ke) mod N .

7. The garbler will calculate both k0 = (v � x0)d mod N and k1 = (v � x1)d

mod N . One of them will equal k, but he doesn’t know which.

8. The garbler finally sends m0
0 = m0 � k0 and m0

1 = m1 � k1, and the evaluator

will simply add k to the message he wants to receive.

4.2.2 Circuit

4.2.2.1 Internal Representation of the Circuit

One of the main challenges that was faced making Gabes was the design and imple-

mentation of the circuit. Internally, the circuit is a Python object that has a pointer

to the last gate of the circuit. This is the minimum requirement needed to define

the circuit, as now each gate in the circuit can be reached by traversing the circuit

through the last gate of the circuit.

A simpler way to think of it is that the circuit keeps a reference to the root of the

tree, and any node (gate) in the tree can be reached by traversing the tree. In fact,

we use an external library called anytree to implement the graph of the circuit.

4.2.2.2 Parsing

Ideally, the program would take any function and convert it into the circuit that is

later used by the garbler and evaluator. However, we found out this was not trivial

by any means and out of the scope of this project. Therefore, we decided that the

user would be the one that provides the circuit as a logic expression. For instance,

the user might provide the following expression:

((A ^B) ^ (C YD)) ^ (E Y F )

and the program will create the circuit by parsing that expression as shown on Code

Listing 4.1.
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>>> from gabes.circuit import Circuit
>>> c = Circuit("sample1.circuit")
>>> c.draw_circuit ()
AND
|--- AND
| |-- AND
| |-- XOR
|--- XOR

Code Listing 4.1: Drawing a Circuit

4.2.3 Gates

All gates are represented via the Gate object, where each Gate is a node in the tree.

Each Gate contains a left, right, and output Wire object (more on this object on the

Wire section).

It is in this class that all the garbling of the gates are performed. The main

function is garble() (Code Listing 4.2), which delegates based on the flags set by

the user to the function that garbles a specific optimization.

def garble(self):
"""

Garbles the gate. Delegates to the correct
optimization depending on the user’s choice.

"""
if settings.CLASSICAL:

self.classical_garble ()
elif settings.POINT_AND_PERMUTE:

self.point_and_permute_garble ()
elif settings.FREE_XOR:

self.free_xor_garble ()
elif settings.FLEXOR:

self.flexor_garble ()
elif settings.GRR3:

self.grr3_garble ()
elif settings.GRR2:

self.grr2_garble ()
elif settings.HALF_GATES:
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self.half_gates_garble ()

Code Listing 4.2: Main function of Gate

For instance, for the classical garble, the function that will garble the table is as

follows on Code Listing 4.3.

def classical_garble(self):
"""

The most simple type of garbling.
In classical garbled circuits ,
the whole boolean table is obfuscated
by encrypting the output label using
the input labels as keys.
After this the table is shuffled
(or *garbled*) so that the evaluator
can’t know more than one output label. For
more information see ‘the paper
<https://dl.acm.org/citation.cfm?id=1382944 >‘_.

Note that a *Fernet* scheme is used
since this method relies on knowing
whether decryption was successful or not,
as the evaluator needs to try and decrypt
the four possible entries
in the boolean table.

"""
for left_label in self.left_wire.labels ():

for right_label in self.right_wire.labels ():
key1 = Fernet(left_label.to_base64 ())
key2 = Fernet(right_label.to_base64 ())
in1 , in2 = left_label.represents , right_label.

represents
logic_value = self.evaluate_gate(in1 , in2)
output_label = self.output_wire.get_label(

logic_value)
pickled = pickle.dumps(output_label)
table_entry = key1.encrypt(key2.encrypt(

pickled))
self.table.append(table_entry)
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shuffle(self.table)

Code Listing 4.3: Classical Garbling

4.2.4 Wires

The main function of the Wire object is to coordinate the two labels running through

that wire. In particular, it must make sure that the labels have di↵erent point-and-

permute bits, and in the case of FreeXOR or Half Gates, that the true label is an

o↵set R of the false label. This can be perfectly seen in the initialization of the object

(Code Listing 4.4).

class Wire(object):
"""

The :class:‘Wire ‘ object holds two labels
representing *True* and *False*. In
classical garbled circuits , there is no
need for a point -and-permute bit. In all
the other cases , a pp_bit is associated
to each label. The two labels
in the same wire must have opposing pp_bits.

If the optimization chosen is FreeXOR or
Half Gates then the true label is the
false label xored with the global
parameter ‘R‘ defined in
:class:‘gabes.circuit.Circuit ‘.

"""
def __init__(self , identifier=None):

self.identifier = identifier
if settings.CLASSICAL:

self.false_label = Label(False)
self.true_label = Label(True)

else:
b = random.choice([True , False])
self.false_label = Label(False , pp_bit=b)
self.true_label = Label(True , pp_bit=not b)

if settings.FREE_XOR or settings.HALF_GATES:
self.true_label.label = xor(self.false_label.

label , settings.R
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)

Code Listing 4.4: Wire Object

4.2.5 Labels

The Label object stores both the truth value it represents and the actual label as

a 256 random bit string. Labels will be sent through the network using the pickle

library which allows Python objects to be sent through the network.

4.2.6 Use of Cryptography

The module crypto.py handles all the cryptography involved with garbled circuits.

The external module cryptography o↵ers a Fernet encryption scheme that suits

well for classical garbled circuits as it shows if decryption was successful or not.

However, for the majority of optimizations decrypting the zero ciphertext is necessary.

Therefore, the encryption/decryption scheme used is AES. While probably an unfit

choice for a secure application, AES su�ces for simple applications.

For instance, on Code Listing 4.5 we can see how labels are set on GRR3.

def generate_zero_ciphertext(left_label , right_label):
k1 = AESKey(left_label.to_base64 ())
k2 = AESKey(right_label.to_base64 ())
enc = k2.decrypt(k1.decrypt(bytes(settings.NUM_BYTES),

unpad=False), unpad=
False)

return enc

Code Listing 4.5: Decrypting the Zero Ciphertext

And we can check this really works:

>>> from gabes.crypto import AESKey ,
generate_zero_ciphertext

>>> from gabes.label import Label
>>> left_label , right_label = Label(0), Label(1)
>>> key1 = AESKey(left_label.to_base64 ())
>>> key2 = AESKey(right_label.to_base64 ())
>>> enc = generate_zero_ciphertext(left_label ,right_label)
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>>> enc
b’\\\\\\ x07\\x08\\xd8\\x05\\x8bX\\x1dE\\x05\\x83D ...’
>>> key1.encrypt(key2.encrypt(enc , pad=False), pad=False)
b’\\x00\\x00\\x00\\x00\\x00\\x00 ...’

Code Listing 4.6: Testing the Zero Ciphertext

4.2.7 Garbler and Evaluator

The modules garbler.py and evaluator.py provide the communication protocol

that the two parties undertake. First, the garbler and the evaluator establish a

connection through a socket. Then the garbler creates the circuit and garbles all the

gates. He then sends to the evaluator the wire identifiers so that the evaluator can

choose which truth values to supply to each wire he controls. After this, the input

labels are transferred to the evaluator. Following the garbled circuits protocol, the

garbler’s labels can be sent as is, as they are obfuscated so the evaluator can not

learn anything. The evaluator’s labels however are trickier, so a 1-out-of-2 oblivious

transfer protocol must be followed for each input label the evaluator supplies.

Once the evaluator is in possession of all the input labels, he can reconstruct the

circuit and send the final output label to the garbler. The garbler can then compare

the label in his circuit and decide which truth value it corresponds. Finally, the

garbler sends the evaluator the final truth value.

The whole process can be seen on the functions on Code Listing 4.7.

# from garbler.py
def garbler(args):

"""
The main function of the application for the garbler.
"""
print("Welcome , garbler.Waiting for the evaluator ...")
sock , client = net.connect_garbler(args.address)
circ = Circuit(args.circuit)
print("Circuit created ...")
identifiers = hand_over_wire_identifiers(client , circ)
inputs = ask_for_inputs(identifiers)
hand_over_labels(client , circ , inputs)
hand_over_cleaned_circuit(client , circ)
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final_output = learn_output(client , circ)
print("The final output of the circuit is: {}".format(

final_output))
sock.close ()
return final_output

# from evaluator.py
def evaluator(args):

"""
The main function of the application for the
evaluator.
"""
print("Welcome , evaluator. Waiting for the garbler ..."

)
sock = net.connect_evaluator(args.address)
idents = request_wire_identifiers(sock)
inputs = ask_for_inputs(idents)
labels = request_labels(sock , idents , inputs)
circ = request_cleaned_circuit(sock)
print("Reconstructing circuit ...")
secret_output = circ.reconstruct(labels)
final_output = learn_output(sock , secret_output)
print("The final output of the circuit is: {}".format(

final_output))
sock.close ()
return final_output

Code Listing 4.7: Garbling and Evaluating

4.2.8 Running Gabes

Gabes runs as a command line interface application. The garbler and the evalu-

ator both run on their terminals their respective roles. The garbler needs to tell

the evaluator the address and port number to establish the connection. For in-

stance, the garbler might run the command gabes -g -grr3 -a localhost:5000

-c sample1.circuit, while the evaluator would run on his terminal the command

gabes -e -grr3 -a localhost:5000.
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Chapter 5

Conclusion

In this project we studied the history, theory, and implementation of garbled circuits,

an exciting, active subfield of cryptography. The last few years have seen many

optimizations that have reduced the size of the table, and it seems, unless there’s

drastically new ways to approach this problem, that optimal solutions have been

reached (in the linear sense).

We divided this project into two parts: theory and implementation of garbled

circuits. However, the original idea was to focus on a theoretical, research project,

leaving the implementation as a proof-of-concept rather than full-on library support-

ing all the optimizations. However, the practical aspect of the project turned out

to be more di�cult and challenging than expected, and the decision to make a full

library supporting all the optimizations was made.

After spending the last two months solely working on the project, we can say that

it has been an intense, rewarding journey. In fact, we believe it is the perfect type of

project for the final year project at Imperial. The theory is challenging but under-

standable if enough hours are put in, and the implementation is tough but in the spirit

of all the labs done throughout the four years at Imperial. Furthermore, the subfield

of garbled circuits is pretty self-contained, and there is no external dependencies on

other fields that might take away time on a project like this.
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5.1 Summary of Work

As stated previously, the project was divided into a theoretical and practical side.

We started out with the theoretical side by studying all the papers related to the

field, starting out with Yao’s construction in the late 1980’s. After the last paper was

read, we researched non-linear ways to optimize AND gates, failing to propose a new

method but discovering along the way a new result on rings.

After completing and writing up the theoretical side, we proceeded in implement-

ing the practical side by first researching on Github current implementations and

extracting common themes among the libraries to include in our own. We then spent

the remaining time coding and documenting the library we created.

5.2 Evaluation of the Project

We evaluate each aspect of the project, detailing the strengths and weaknesses en-

countered along the way.

5.2.1 Theory

• Strengths:

– One of the questions when the project started was the amount of opti-

mizations we could research and fully understand before the project was

due. Originally, it was planned that all the optimizations except garbled

gadgets were going to be talked about. Not only did we have time for that,

but we also included garbled gadgets in the report, giving a full picture of

the theory of garbled circuits since its inception until present day without

leaving any key part.

– We were able to understand what failed in the proposed optimization we

discussed and were able to establish a new result that builds on top of the

result mentioned in Half Gates. That is, we established there could be no

FreeAND in a ring R that followed the technique used by FreeXOR.

• Weaknesses:
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– There were however some weaknesses to this side of the project. In par-

ticular, we didn’t touch upon proofs of security and privacy in any of the

optimizations discussed. This would have been a nice addition to the re-

port to make it more complete. However, the di�culty of understanding

the proofs in this field and the lack of time made it impossible to include

all the proofs.

– Although an ambitious aspect to begin with and probably not classifiable

as a weakness, we couldn’t come up with an optimization for AND gates

that lowered the size of the table from two downwards. However, this is

a very exciting part to research and can perfectly lead to research in a

programme for an MPhil or a PhD.

5.2.2 Implementation

• Strengths:

– One of the goals of the library was to be as clear and easy to use as possible.

We believe the goal was reached. Using Python eased the process, as the

code is written in a clean, commented way. Also, the OOP design makes

it intuitive to understand to the developer (e.g. there is Circuit, Wire,

Label objects resembling the theoretical aspect).

– The library has a thorough documentation that details all the functions

written for the library with examples of how to use it.

– Most of the optimizations are included in the library, and the addition of

future optimizations is very simple to include by attaching the optimization

to the garble() function.

• Weaknesses:

– The library is slower than other C/C++ implementations. This is primar-

ily because Python was used, but other practical optimizations (such as

pipelining) weren’t implemented. In a future release it would be nice to

include practical optimizations to speed up the library.
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– There was no library that supported polynomial interpolation over general

fields. Of course if the field was of size p for any prime then we could’ve

implemented ourselves. However, for a general pa, we needed to create

the field, a polynomial ring, and find an irreducible polynomial to perform

division. We tried to implement this optimization of garbled circuits but

found out that the process of finding an irreducible polynomial is not trivial

at all. We also tried to fix some irreducible polynomials by predefining

them for various field orders, but this is not flexible for the user, and

therefore we have not included GRR2 in our library. Whenever a library

comes up that supports general fields we can easily include GRR2 in our

library.

– The circuit has to be written by the user, instead of providing the function

to garble and then the library building the circuit from the function.

5.2.3 Comparison to Existing Solutions

Gabes has its advantages and disadvantages. While already talked about, this library

focuses on ease-of-use while other existing libraries o↵er speed sacrificing legibility. In

our case, this was intentional by design as we saw the practical side of this project as a

proof of concept rather than a real life library to use on critical applications. Another

advantage to our library is the fact that (almost) all the optimizations are included,

and using one or the other is as easy as setting a flag. Other existing solutions either

implement one of the optimizations or some of them. Finally, a big disadvantage of

Gabes at the moment is the fact that the user has to supply the circuit. Ideally,

the user would provide a Python function that takes two parameters and outputs one

parameter, and the library would convert that into a circuit. However, we researched

and found out that this was out of the scope of the project, but it would be a good

addition to the future of the library.

5.3 Future Work

A distinction should be made between the future work of this project and the subfield

of garbled circuits as a whole. Nevertheless, both of these have clear future work.
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In terms of the project, an improvement of Gabes would go through speeding up

the library via practical optimizations performed over the last few years. Mainly, the

idea of pipelining so that the evaluator doesn’t have to wait for the whole circuit to be

created, but rather he can evaluate gates as soon as the garbler garbles them. Also,

including GRR2 would be a nice extension so that the user has all the optimizations

at hand. Finally, the fact that the user needs to write the circuit can be improved

greatly by building the circuit from the function the user chooses.

In terms of garbled circuits, the future work runs by lowering that bound on the

size of the table of each gate. The paper that introduced Half Gates also gave a lower

bound for linear schemes, suggesting that any optimizations that lowered the number

of ciphertexts per gate would have to be implemented much di↵erently to current

techniques. We’ll see where we are at in a few years.
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CHAPTER

ONE

INTRODUCTION

Garbled Circuits allow two distrusting parties to compute a joint function while keeping their inputs private. More
precisely, it allows Alice with input x and Bob with input y to compute a function f(x, y) without Alice ever knowing y

and without Bob knowing x. The way it does so is by first translating f to a boolean circuit from which it will cleverly
obfuscate or garble the circuit to allow the computation of f while keeping the inputs private.

The classical example is that of two millionaires who wish to find out who is richer without revealing their wealth. In
that case, f becomes the “>” (greater than) function, and x and y are their wealth.

Gabes implements garbled circuits in Python. The application runs as a command line interface but the functions
required to run garbled circuits can be used without the command line (see gabes).
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CHAPTER

TWO

INSTALLATION

At the command line either via easy_install or pip:

$ easy_install gabes
$ pip install gabes

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv gabes
$ pip install gabes
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CHAPTER

THREE

USAGE

Each party will run their own instance of the program on their computer as a CLI app. The garbler will provide the IP
and port number to establish the connection with the evaluator.

Note: Make sure to open the port when connecting between two different networks.

Garbler’s Side:

gabes -g -grr3 -c Desktop/my-circuit.circuit -a localhost:5000

Evaluator’s Side:

gabes -e -grr3 -a localhost:5000
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CHAPTER

FOUR

FLAGS

usage: gabes [-h] [-g] [-e] [-b bits] [-i identifier [identifier ...]]
[-c file] -a ip:port [-cl] [-pp] [-grr3] [-free] [-grr2]
[-fle] [-half]

Program to garble and evaluate a circuit.

optional arguments:
-h, --help show this help message and exit
-g, --garbler Set this flag to become the garbler
-e, --evaluator Set this flag to become the evaluator
-b bits, --bits bits Include your private input bitstring to the circuit

(e.g. 001011)
-i identifier [identifier ...], --identifiers identifier [identifier ...]

Indicate which input wires you supply to the circuit
(e.g. -i A C D)

-c file, --circuit file
Path of the file representing the circuit. Only the
garbler needs to supply the file

-a ip:port, --address ip:port
IP address followed by the port number

-cl, --classical Set this flag for classical garbled circuits
-pp, --point-and-permute

Set this flag to include point-and-permute
-grr3, --grr3 Set this flag for GRR3 garbled circuits
-free, --free-xor Set this flag for free-xor garbled circuits
-fle, --flexor Set this flag for flexor garbled circuits
-half, --half-gates Set this flag for half gates garbled circuits
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CHAPTER

FIVE

DOCUMENTATION

All the documentation can be found in https://gabes.readthedocs.io/en/latest/
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CHAPTER

SIX

INTERFACE

Details of functions and classes are given in this section.

6.1 API

This part of the documentation explains each function or class in detail to better understand the internal details behind
garbled circuits.

6.1.1 Circuit

This module implements the Circuit object which is in charge of maintaining the tree hierarchy for the circuit. This
includes handling all the gates in the circuit as well as keeping track of global parameters (for instance R in FreeXOR).
It also parses the .circuit file into the tree via the function gabes.circuit.build_tree().

At the moment, the structure of the .circuit file must be like the one shown in examples; that is, each child gate of a
gate (except the root) must be surrounded by parenthesis.

class gabes.circuit.Circuit(file)
The Circuit object holds all the gates and wires composing the circuit. Internally, it is represented as a binary
tree. It also sets R for FreeXOR or Half Gates if necessary.

Parameters file (str) – path of the file describing the circuit

build_tree(file)
Builds the tree recursively by parsing and breaking up the circuit file into smaller expressions until the
expression left is the wire’s identifier. On each gate it visits the function also garbles it in preparation for
the evaluator.

Parameters file (str) – path of the file describing the circuit

Returns the root node as used in the package anytree

Return type anytree.Node

clean()
Cleans the circuit from any private labels in preparation for the evaluator. Before cleaning, it creates a
copy of itself so that the garbler still has a reference of the mapping between labels and truth values.

draw_circuit()
Draws the tree structure of the circuit.
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>>> from gabes.circuit import Circuit
>>> c = Circuit('gabes/circuits/simple-2.circuit')
>>> c.draw_circuit()
AND

AND
AND
XOR

XOR

reconstruct(labels)
Function used by the evaluator to reconstruct the circuit given only the input labels by the garbler. The
reconstruction needs to be done in a bottom-up approach since the output labels of input gates will serve
as input labels for parent gates. The function traverses the tree by level starting at the leaves. If the nodes
are leaves, then the labels will be provided through the network by the garbler. For all other nodes, the
evaluator will have the necessary labels as part of the node’s children by a process of ungarbling (see
gabes.gate.Gate.ungarble()).

Parameters labels (list(Label)) – the list of input labels supplied by the garbler

Returns the final output label at the end of the circuit

Return type Label

6.1.2 Gate

This module implements the Gate object. The bulk of gabes resides on this module. In it, both garbling and ungar-
bling (or evaluating) techniques are implemented.

class gabes.gate.Gate(gate_type, create_left=True, create_right=True)
The Gate object contains three wires: a left wire, a right wire, and an output wire, each having a false label and
a true label. Depending on the settings, different optimizations will be used to garble and ungarble.

Parameters

• gate_type (str) – type of gate (AND, OR, etc)

• create_left (bool) – whether to create the left wire on the gate’s initialization

• create_right (bool) – whether to create the right wire on the gate’s initialization

classical_garble()
The most simple type of garbling. In classical garbled circuits, the whole boolean table is obfuscated by
encrypting the output label using the input labels as keys. After this the table is shuffled (or garbled) so
that the evaluator can’t know more than one output label. For more information see the paper.

Note that a Fernet scheme is used since this method relies on knowing whether decryption was successful
or not, as the evaluator needs to try and decrypt the four possible entries in the boolean table.

classical_ungarble(garblers_label, evaluators_label)
The classical evaluation, in which the evaluator tries the four possible table entries until one of them
decrypts the cipher.

Parameters

• garblers_label – the chosen label by the garbler

• evaluators_label – the chosen label by the evaluator

Returns the correct output label

Return type Label

6.1. API 7

https://dl.acm.org/citation.cfm?id=1382944


gabes Documentation, Release 0.1.0

evaluate_gate(input1, input2)
Evaluates a gate given two inputs.

Parameters

• input1 (bool) – the first input

• input2 (bool) – the second input

Returns the output of the gate

Return type bool

flexor_garble()
In this optimizationn XOR are garbled with a table size of 0, 1, or 2 (hence its name flexible XORs). The
innovation at the time was that this method is compatible with GRR2. The way it accomplishes this is by
changing the input wires’ labels to have the same offset as the output wire’s labels. For more information
see the paper.

flexor_ungarble(garblers_label, evaluators_label)
Transforms the two input labels to have the same offset as the output’s true label.

Parameters

• garblers_label – the chosen label by the garbler

• evaluators_label – the chosen label by the evaluator

Returns the correct output label

Return type Label

free_xor_garble()
In this optimization XOR gates are garbled for free, that is, the table corresponding to this gate is empty.
The way this optimization accomplishes this is by setting the true label of each wire as an offset R of the
false label. This offset is global to the whole circuit, so by the properties of XOR, everything works out
nicely. For more information see the paper.

Note that FreeXOR is not compatible with GRR2.

free_xor_ungarble(garblers_label, evaluators_label)
Evaluates XOR gates for free by XORing the two labels he receives.

Parameters

• garblers_label – the chosen label by the garbler

• evaluators_label – the chosen label by the evaluator

Returns the correct output label

Return type Label

garble()
Garbles the gate. Delegates to the correct optimization depending on the user’s choice.

grr3_garble()
In this optimization the entry corresponding to the two labels that have a false point-and-permute bit is
not sent over the network. Instead, the output label corresponding to this entry is set to be equal to the
decryption of the zero ciphertext. Therefore, there is no need to send the entry because it is simply the
zero ciphertext. The only thing the evaluator needs to do is to conclude that if he receives two false
point-and-permute bits, the ciphertext will be the all zeros. For more information see the paper.

Note that now Fernet schemes can not be used since there is no way to decrypt the zero ciphertext. Instead,
AES is used. See the Cryptography section for more details.

6.1. API 8
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grr3_ungarble(garblers_label, evaluators_label)
If the point-and-permute bits are false, then imagine the ciphertext was the all zero ciphertext. Otherwise,
proceed as in the point-and-permute optimization.

Parameters

• garblers_label – the chosen label by the garbler

• evaluators_label – the chosen label by the evaluator

Returns the correct output label

Return type Label

half_gates_garble()
In this optimization, the most current one to date, the authors propose a method to garble AND gates with
a table size of two ciphertexts in a way that is compatible with FreeXOR. The way they accomplish this is
by breaking up an AND gate into two half gates. For more information see the paper.

half_gates_ungarble(garblers_label, evaluators_label)
Evaluates the gate by decrypting each half gate and XORing the result.

Parameters

• garblers_label – the chosen label by the garbler

• evaluators_label – the chosen label by the evaluator

Returns the correct output label

Return type Label

modify_pp_bits(A0_, B0_, C0_)
Modifies the point-and-permute bits according to the last bit of the label.

point_and_permute_garble()
In this optimization each label has a point-and-permute bit associated to it, with the only rule that labels
running in the same wire must have opposing point-and-permute bits. The garbler will insert the encrypted
output labels according to the point-and-permute bit of the input labels. Therefore, now the evaluator does
not need to try and decrypt all the four ciphers but rather the one indicated by the two point-and-permute
bits he has. For more information see the paper.

point_and_permute_ungarble(garblers_label, evaluators_label)
Evaluates the gate by indexing the table according to the point-and-permute bits given.

Parameters

• garblers_label – the chosen label by the garbler

• evaluators_label – the chosen label by the evaluator

Returns the correct output label

Return type Label

set_zero_ciphertext()
Generates the zero ciphertext by taking the two labels with false point-and-permute bits and setting the
output labels accordingly. This function is used for GRR3.

transform_label(label, garbler=True)
Transforms the label accordingly.

Parameters

• label – the label to transform
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• garbler (bool) – the type of label supplied

ungarble(garblers_label, evaluators_label)
Ungarbles the gate. Delegates to the correct optimization depending on the user’s choice.

Parameters

• garblers_label – the chosen label by the garbler

• evaluators_label – the chosen label by the evaluator

Returns the correct output label

Return type Label

update_output_wire(false_label, true_label)
Updates the output wire’s labels and point-and-permute bits.

Parameters

• false_label – the false label

• true_label – the true label

wires()
Returns the three wires related to the gate.

Returns the three wires

Return type list(Wire)

6.1.3 (The) Wire

Note: “The king stay the king”

• D’Angelo Barksdale

This module implements the Wire object. Each gate will have a left wire (in the case of input gates, this will be
probably be supplied by the garbler), a right wire (evaluator), and an output wire. Each wire holds the two possible for
labels that run through it.

class gabes.wire.Wire(identifier=None)
The Wire object holds two labels representing True and False. In classical garbled circuits, there is no need for
a point-and-permute bit. In all the other cases, a pp_bit is associated to each label. The two labels in the same
wire must have opposing pp_bits.

If the optimization chosen is FreeXOR or Half Gates then the true label is the false label xored with the global
parameter R defined in gabes.circuit.Circuit

Parameters identifier (str) – (optional) wire’s unique identifier

>>> from gabes.wire import Wire
>>> w = Wire(identifier='A')
>>> str(w)
'Wire A'
>>> w.false_label
b'dnE2Gsvhx84HgwrLRm8L9aFtI_aBYxzEDaOBRK2qkP0='
>>> w.true_label
b'eBRWiJzYL65gU8nBFvXRZ8NK4_Cf9GlrYtNGZNEZOSs='
>>> w.get_label(True) == w.true_label.represents
True

6.1. API 10
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get_label(representing)
Gets the label according to which truth value it represents.

Parameters representing (bool) – True for the true label and False for the false label

Returns the corresponding label

Return type Label

labels()
A getter method to get the two labels (False and True) going through the wire.

Returns a tuple of labels

Return type Generator[Wire]

6.1.4 Label

This module implements the Label object. A label represents an obfuscated truth value. By default, the label is
represented as a random 256 bitstring, but the label is encoded in base64 for the user. To change the length of the
bitstring, head to gabes.settings.

class gabes.label.Label(represents, pp_bit=None)
The Label object, which contains the label that will represent either the boolean False or True for a particular
gate.

Parameters

• represents (bool) – (optional) the boolean value this label represents

• pp_bit (bool) – (optional) the point-and-permute bit

>>> from gabes.label import Label
>>> label = Label(0, pp_bit=True)
>>> label.label
b'y\x8c\xc4C\x99\x9c\x1d&\xa3R\xdbB\xcep-\xc5
\xe9R=\xc1\xd8\xaeq}\xe0c\x80\xd8g\xac_\x96'
>>> label.to_base64()
b'eYzEQ5mcHSajUttCznAtxelSPcHYrnF94GOA2GesX5Y='

to_base32()
Returns the label encoded in base32.

Returns the label in base32

Return type str

to_base64()
Returns the label encoded in base64.

Returns the label in base64

Return type str

6.1.5 Garbler

This module provides the communication protocol seen from the point of view of the garbler. First, the garbler and the
evaluator establish a connection through a socket. Then the garbler creates the circuit and garbles all the gates. He then
sends to the evaluator the wire identifiers so that the evaluator can choose which truth values to supply to each wire
he controls. After this, the input labels are transferred to the evaluator. Following the garbled circuits protocol, the

6.1. API 11



gabes Documentation, Release 0.1.0

garbler’s labels can be sent as is, as they are obfuscated so the evaluator can not learn anything. The evaluator’s labels
however are trickier, so a 1-out-of-2 oblivious transfer protocol must be followed for each input label the evaluator
supplies.

Once the evaluator is in possesion of all the input labels, he can reconstruct the circuit and send the final output label to
the garbler. The garbler can then compare the label in his circuit and decide which truth value it corresponds. Finally,
the garbler sends the evaluator the final truth value.

gabes.garbler.garbler(args)
The main function of the application for the garbler. For more information on the process, see above.

Parameters args – the arguments from the command line interface

Returns the output of the circuit

Return type bool

gabes.garbler.hand_over_wire_identifiers(client, circ)
Sends the wire identifiers to the evaluator.

Parameters

• client – the client is the evaluator

• circ – the circuit to which the wires belong

Returns the identifiers of the input wires

Return type list(str)

gabes.garbler.hand_over_cleaned_circuit(client, circ)
Sends a clean circuit (in which every label’s represents flag has been deleted) to the evaluator.

Parameters

• client – the client is the evaluator

• circ – the circuit in question

gabes.garbler.hand_over_labels(client, circ, garbler_inputs)
Sends the input labels of the circuit to the evaluator. The labels that belong to the garbler can be sent without
any modification. In order for the evaluator to learn his labels, he must acquire them through the oblivious
transfer protocol, in which the garbler inputs the two possible labels, the evaluator inputs his choice of truth
value, and the evaluator learns which label corresponds to his truth value without the garbler learning his choice
and without the evaluator learning both labels.

Parameters

• client – the client is the evaluator

• circ – the circuit in question

• garbler_inputs – the inputs the garbler provides

gabes.garbler.learn_output(client, circ)
Learns the final truth value of the circuit by comparing the label that was handed to him by the evaluator to the
two labels in the root of the tree (i.e. the final gate).

Parameters

• client – the client is the evaluator

• circ – the circuit in question

Returns the output of the circuit

Return type bool
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6.1.6 Evaluator

This module provides the communication protocol seen from the point of view of the evaluator. To learn the whole
process, see the Garbler’s section.

gabes.evaluator.evaluator(args)
The main function of the application for the evaluator. For more information on the process, see the introduction
to the Garbler’s section.

Parameters args – the arguments from the command line interface

Returns the output of the circuit

Return type bool

gabes.evaluator.request_cleaned_circuit(sock)
Receives a clean circuit (in which every label’s represents flag has been deleted) from the garbler.

Parameters sock – the socket from which it will receive the data

Returns the cleaned circuit

Return type Circuit

gabes.evaluator.request_wire_identifiers(sock)
Receives the wire identifiers from the garbler.

Parameters sock – the socket from which it will receive the data

Returns the identifiers of the input wires

Return type list(str)

gabes.evaluator.request_labels(sock, identifiers, evaluator_inputs)
Receives the input labels of the circuit from the garbler. The labels that belong to the garbler can be sent without
any modification. In order for the evaluator to learn his labels, he must acquire them through the oblivious
transfer protocol, in which the garbler inputs the two possible labels, the evaluator inputs his choice of truth
value, and the evaluator learns which label corresponds to his truth value without the garbler learning his choice
and without the evaluator learning both labels.

Parameters

• sock – the socket from which it will receive the data

• identifiers – the identifiers for all the input wires

• evaluator_inputs – the inputs the evaluator provides

Returns the input labels

Return type list(Label)

gabes.evaluator.learn_output(sock, secret_output)
Sends the final label and learns the final truth value from the garbler.

Parameters

• sock – the socket from which it will receive the data

• secret_output – the final label of the circuit

Returns the output of the circuit

Return type bool
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6.1.7 Cryptography

This module handles all the cryptography involved with garbled circuits. The external module cryptography of-
fers a Fernet encryption scheme that suits well for classical garbled circuits as it shows if decryption was successful
or not. However, for the majority of optimizations decrypting the zero ciphertext is necessary. Therefore, the en-
cryption/decryption scheme used is AES. While probably an unfit choice for a secure application, AES suffices for
simple applications. If more security is needed, the recommendation is to change AES for a stronger cryptographic
encryption scheme such as AES256.

class gabes.crypto.AESKey(key)
The AESKey object handles the key to AES and the encryption/decryption routines. To ensure that the key can
be fed into AES, the input to the object is hashed with SHA256 to a 32 bytestring (AES only allows 16/32/64
bytes inputs).

Parameters key (bytes) – parameter to be hashed and used as a key

>>> from gabes.crypto import AESKey
>>> from gabes.label import Label
>>> label = Label(1)
>>> key = AESKey(label.to_base64())
>>> enc = key.encrypt(b"The winner is...")
>>> key.decrypt(enc)
b'The winner is...'

decrypt(msg, from_base64=False, unpad=True)
Decrypts the message msg by first unpadding it or decoding it from base64 if necessary.

Parameters

• msg (bytes) – the message to be decrypted

• from_base64 (bool) – (optional) whether to decode the cipher from base64

• unpad (bool) – (optional) whether to unpad the message

Returns decrypted message

Return type bytes

encrypt(msg, to_base64=False, pad=True)
Encrypts the message msg by first padding it if necessary since AES requires prespecified input sizes. It
then converts the cipher into base64 if needed.

Parameters

• msg (bytes) – the message to be encrypted

• to_base64 (bool) – (optional) whether to convert the cipher to base64

• pad (bool) – (optional) whether to pad the message

Returns encrypted message

Return type bytes

pad(msg, size=16)
Takes a bytestring and pads it to be a multiple of size. To keep track of the padding, the first four bytes
store the size of the padded bytestring.

Parameters

• msg (bytes) – the bytestring to pad

• size (int) – (optional) padded result must be a multiple of this number
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Returns padded bytestring

Return type bytes

unpad(msg)
Takes a bytestring and unpads it to the original bytestring. Since the first four bytes store the original
unpadded size of the bytestring, we extract those four bytes and return the bytestring from position 4 to
size + 4 .

Parameters msg (bytes) – the bytestring to unpad

Returns unpadded bytestring

Return type bytes

gabes.crypto.generate_zero_ciphertext(left_label, right_label)
Generates the label c that when decrypted using the left_label and right_label keys will yield the zero
ciphertext.

Parameters

• left_label (Label) – left label to use as key

• right_label (Label) – right label to use as key

Returns encrypted text

Return type bytes

>>> from gabes.crypto import AESKey, generate_zero_ciphertext
>>> from gabes.label import Label
>>> left_label, right_label = Label(0), Label(1)
>>> key1 = AESKey(left_label.to_base64())
>>> key2 = AESKey(right_label.to_base64())
>>> enc = generate_zero_ciphertext(left_label, right_label)
>>> enc
b'\\\x07\x08\xd8\x05\x8bX\x1dE\x05\x83D ?\xe6
\x10\\\x07\x08\xd8\x05\x8bX\x1dE\x05\x83D ?\xe6\x10'
>>> key1.encrypt(key2.encrypt(enc, pad=False), pad=False)
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00'

6.1.8 Network

This module is in charge of handling all the communication between the garbler and the evaluator, providing an easy
API to hide the lower-level sockets.

gabes.network.connect_garbler(address)
Connects the garbler to the socket. The garbler will act as the server, and the evaluator as the client.

Parameters address (str) – the address of the socket (IP and the port number in the format
IP:port)

Returns the socket and the client (the evaluator)

gabes.network.connect_evaluator(address)
Connects the evaluator to the socket. The garbler will act as the server, and the evaluator as the client.

Parameters address (str) – the address of the socket (IP and the port number in the format
IP:port)
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Returns the socket

gabes.network.send_data(sock, data)
Sends data through the socket. The data is pickled so that objects can be sent through the socket. As the
socket can accept a fixed size number of bytes, the function sends the size of the data to know how many bytes
to receive through the network.

Parameters

• sock – the socket or the client

• data (bytes) – the data to send through the socket

gabes.network.receive_data(from_whom)
Receives data through the socket.

Parameters from_whom – either the client (evaluator) or the socket (the garbler)

Returns the unpickled data

gabes.network.send_ack(sock)
Sends an ACK through the socket. This will be useful for the OT protocol.

Parameters sock – either the client (evaluator) or the socket (the garbler)

gabes.network.wait_for_ack(sock)
Waits until it receives an ACK through the socket. This will be useful for the OT protocol.

Parameters sock – either the client (evaluator) or the socket (the garbler)

6.1.9 Oblivious Transfer

This module implements 1-out-of-2 oblivious transfer. Essentially, the garbler inputs to the protocol two messages m0
and m1, while the evaluator inputs a single bit b. The garbler learns nothing from this protocol and the evaluator learns
either m0 or m1 depending on his bit b, but not both. The OT protocol followed in this module is the following:

1. The garbler generates an RSA public/private key pair and sends the public portion (e, N) to the
evaluator along with two random messages x0 and x1.

2. The evaluator generates a random k and depending on his bit b sends to the garbler v = (xb + k
^ e) mod N.

3. The garbler computes both k0 = (v - x0) ^ d mod N and k1 = (v - x1) ^ d mod N.
One of these will equal k, but he doesn’t know which.

4. The garbler sends m0_ = m0 + k0 and m1_ = m1 + k1 to the evaluator.

5. The evaluator decrypts depending on his bit mb_ = mb - k, learning only m0 or m1.

gabes.ot.garbler_ot(client, m0, m1)
The OT protocol seen from the point of view of the garbler. This includes creating the RSA key pair, generating
x0 and x1, computing k0 and k1, and sending m0_ and m1_. Note that pickling of m0 and m1 is done
beforehand for it to be possible to send Label objects.

Parameters

• client – the evaluator’s address

• m0 (bytes) – the first bytes object (in this case, a label)

• m1 (bytes) – the second bytes object (in this case, a label)
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gabes.ot.evaluator_ot(sock, b)
The OT protocol seen from the point of view of the evaluator. This includes choosing the random k, sending v,
and learning either m0 or m1.

Parameters

• sock – the garbler’s address

• b (bool) – the evaluator’s bit

6.1.10 Utils

This module includes utility functions used throughout the package.

gabes.utils.ask_for_inputs(identifiers)
CLI helper function that queries the user to indicate which identifier he supplies and the his choice for each
identifier.

Parameters identifiers (list(str)) – the identifiers of the input wires

Returns the identifiers the user supplies

Return type dict

gabes.utils.get_last_bit(label)
Gets the last bit from a bytestring.

Parameters label (bytes) – any bytes object

Returns the last bit

Return type bool

>>> import os
>>> from gabes.utils import get_last_bit
>>> b1 = os.urandom(10)
>>> b1
b'\xf3\x9e\xb0w,|\xd9\xa8\xd73'
>>> get_last_bit(b1)
False

gabes.utils.xor(b1, b2)
XORs two bytestrings.

Parameters

• b1 (bytes) – first argument

• b2 (bytes) – second argument

Returns the XORed result

Return type bytes

>>> import os
>>> from gabes.utils import get_last_bit
>>> b1 = os.urandom(10)
>>> b2 = os.urandom(10)
>>> b1, b2
(b'\xf8\x00r\xaf\x9a\x06!68\x83', b'\x88
\xee\x1c,a\xd0^\x8a\xb4\xf2')
>>> xor(b1, b2)

(continues on next page)
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(continued from previous page)

b'p\xeen\x83\xfb\xd6\x7f\xbc\x8cq'
>>> xor(b1, xor(b1, b2)) == b2
True

gabes.utils.adjust_wire_offset(wire)
Adjusts the wire’s offset so that the two labels have a distinct last bit.

Parameters wire – the wire in question
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SEVEN

FEEDBACK

If you have any suggestions or questions about gabes feel free to email me at nachonavarroasv@gmail.com.

If you encounter any errors or problems with gabes, please let me know! Open an Issue at the GitHub http://github.
com/nachonavarro/gabes main repository.

19

mailto:nachonavarroasv@gmail.com
http://github.com/nachonavarro/gabes
http://github.com/nachonavarro/gabes


PYTHON MODULE INDEX

g

gabes, 6
gabes.circuit, 6
gabes.crypto, 14
gabes.evaluator, 13
gabes.garbler, 11
gabes.gate, 7
gabes.label, 11
gabes.network, 15
gabes.ot, 16
gabes.utils, 17
gabes.wire, 10

20



INDEX

A

adjust_wire_offset() (in module gabes.utils), 18
AESKey (class in gabes.crypto), 14
ask_for_inputs() (in module gabes.utils), 17

B

build_tree() (gabes.circuit.Circuit method), 6

C

Circuit (class in gabes.circuit), 6
classical_garble() (gabes.gate.Gate method), 7
classical_ungarble() (gabes.gate.Gate method), 7
clean() (gabes.circuit.Circuit method), 6
connect_evaluator() (in module gabes.network), 15
connect_garbler() (in module gabes.network), 15

D

decrypt() (gabes.crypto.AESKey method), 14
draw_circuit() (gabes.circuit.Circuit method), 6

E

encrypt() (gabes.crypto.AESKey method), 14
evaluate_gate() (gabes.gate.Gate method), 7
evaluator() (in module gabes.evaluator), 13
evaluator_ot() (in module gabes.ot), 16

F

flexor_garble() (gabes.gate.Gate method), 8
flexor_ungarble() (gabes.gate.Gate method), 8
free_xor_garble() (gabes.gate.Gate method), 8
free_xor_ungarble() (gabes.gate.Gate method), 8

G

gabes (module), 6
gabes.circuit (module), 6
gabes.crypto (module), 14
gabes.evaluator (module), 13
gabes.garbler (module), 11
gabes.gate (module), 7
gabes.label (module), 11
gabes.network (module), 15

gabes.ot (module), 16
gabes.utils (module), 17
gabes.wire (module), 10
garble() (gabes.gate.Gate method), 8
garbler() (in module gabes.garbler), 12
garbler_ot() (in module gabes.ot), 16
Gate (class in gabes.gate), 7
generate_zero_ciphertext() (in module gabes.crypto), 15
get_label() (gabes.wire.Wire method), 10
get_last_bit() (in module gabes.utils), 17
grr3_garble() (gabes.gate.Gate method), 8
grr3_ungarble() (gabes.gate.Gate method), 8

H

half_gates_garble() (gabes.gate.Gate method), 9
half_gates_ungarble() (gabes.gate.Gate method), 9
hand_over_cleaned_circuit() (in module gabes.garbler),

12
hand_over_labels() (in module gabes.garbler), 12
hand_over_wire_identifiers() (in module gabes.garbler),

12

L

Label (class in gabes.label), 11
labels() (gabes.wire.Wire method), 11
learn_output() (in module gabes.evaluator), 13
learn_output() (in module gabes.garbler), 12

M

modify_pp_bits() (gabes.gate.Gate method), 9

P

pad() (gabes.crypto.AESKey method), 14
point_and_permute_garble() (gabes.gate.Gate method), 9
point_and_permute_ungarble() (gabes.gate.Gate

method), 9

R

receive_data() (in module gabes.network), 16
reconstruct() (gabes.circuit.Circuit method), 7
request_cleaned_circuit() (in module gabes.evaluator), 13
request_labels() (in module gabes.evaluator), 13

21



gabes Documentation, Release 0.1.0

request_wire_identifiers() (in module gabes.evaluator),
13

S

send_ack() (in module gabes.network), 16
send_data() (in module gabes.network), 16
set_zero_ciphertext() (gabes.gate.Gate method), 9

T

to_base32() (gabes.label.Label method), 11
to_base64() (gabes.label.Label method), 11
transform_label() (gabes.gate.Gate method), 9

U

ungarble() (gabes.gate.Gate method), 10
unpad() (gabes.crypto.AESKey method), 15
update_output_wire() (gabes.gate.Gate method), 10

W

wait_for_ack() (in module gabes.network), 16
Wire (class in gabes.wire), 10
wires() (gabes.gate.Gate method), 10

X

xor() (in module gabes.utils), 17

Index 22


	Introduction
	Motivation
	Goals
	Structure of Thesis

	Yao's Garbled Circuits
	Yao's Solution the Millionaire's Problem
	Oblivious Transfer
	Boolean Circuits
	Yao's Protocol
	Formalizing Yao's Protocol
	Garbling Schemes
	Security of garbling schemes


	Optimizations
	Parameters to optimize
	Size
	Computation
	Hardness assumption

	Point-and-permute (1990)
	Garbled Row Reduction 3 (1999)
	Free XOR (2008)
	Formalizing FreeXOR
	Intuition of Security

	Garbled Row Reduction 2 (2009)
	Odd Gates
	Even Gates
	Experimental Results

	FleXOR (2014)
	Experimental Results

	Half Gates (2015)
	Half Gates
	Putting it all together
	Experimental Results
	Lower Bounds on Garbled Circuits
	Linear Garbling Schemes


	Garbled Gadgets
	Improvements
	Generalizing FreeXOR
	Addition
	Multiplication by a constant

	Generalizing Point-and-Permute

	Focusing on optimizing AND gates
	An (almost) successful approach
	Problems
	On finding the right S
	Generalizing to a Circuit

	Questions
	Answers
	Impossibility of FreeAND in a Ring


	Implementation
	Other Implementations
	Gabes
	Oblivious Transfer
	Circuit
	Internal Representation of the Circuit
	Parsing

	Gates
	Wires
	Labels
	Use of Cryptography
	Garbler and Evaluator
	Running Gabes


	Conclusion
	Summary of Work
	Evaluation of the Project
	Theory
	Implementation
	Comparison to Existing Solutions

	Future Work

	Bibliography

