
MEng Individual Project

Imperial College London

Department of Computing

Model Aligned Offline Reinforcement Learning

Author:
Aditya Goel

Supervisor:
Dr. Edward Johns

Second Marker:
Dr. Antoine Cully

June 20, 2022

Abstract

A significant obstacle facing widespread adoption of reinforcement learning methods is the need for
trial-and-error, experience driven learning which can be infeasible when tackling real world problems.
Offline reinforcement learning methods aim to decouple data collection from policy learning by learning
policies from diverse, static datasets without real world interaction. The development of successful offline
reinforcement learning methods could have a transformative effect in areas ranging from robotics to
healthcare. Unfortunately, performance of existing offline methods have traditionally lagged their online
counterparts.

In this report we identify misalignment between data sampled from the experience replay buffer and
the state-action visitation of the agent as being as being a significant cause of performance degradation
in offline methods. Through experimental study, we illustrate that this problem is distinct from exist-
ing challenges being addressed in the field such as errors introduced by extrapolation and argue that
algorithmic innovation is needed to address this.

We systematically address this problem by introducing a novel class of offline reinforcement learning
algorithms we call Model Aligned Offline Reinforcement Learning (MAORL). Unlike any offline reinforce-
ment learning method that precedes it, MAORL algorithms tune the buffer sampling regime rather than
applying constraints on policy improvement. By framing the misalignment problem in a quantitative
way, we are able to derive an iterative, gradient-based solution to continuously tune the buffer sampling
regime over the course of training.

We find that our approach successfully corrects misalignment and can reach performance levels com-
parable with online algorithms on a suite of synthetic GridWorld tasks.

Acknowledgements

I would like to thank my supervisor Dr. Edward Johns for the opportunity to work on such a fascinating
project. It has been deeply fulfilling work and has rekindled my fascination with machine intelligence
and love of research.

I would also like to thank my friends and my girlfriend, Priya, for sharing the ups and downs of the
university experience with me over the last four years.

Last but certainly not least, I want to thank my family. You have inspired me to try and be better
every day.

The first principle is that you must not fool yourself — and you are the easiest person to fool.
Richard Feynman

2

Contents

1 Introduction 6

1.1 Motivation . 6

1.2 Objectives . 6

1.3 Contributions . 7

2 Background 8

2.1 Reinforcement Learning . 8

2.2 Offline Reinforcement Learning . 12

2.2.1 Challenges . 12

2.2.2 Current Approaches . 13

2.2.3 Model-free offline reinforcement learning . 13

2.2.4 Model-based offline reinforcement learning . 15

2.3 Uncertainty Estimation in Deep Neural Networks . 15

2.3.1 Gaussian Process Regression . 16

2.3.2 Deep Ensembles . 16

2.3.3 Spectral-normalised Gaussian Processes . 17

2.4 Convex optimisation . 18

2.4.1 Standard form . 18

2.4.2 Projected Gradient Descent . 19

2.5 Ethical Discussion . 20

3 The Sampling Alignment Problem in Deep Offline Reinforcement Learning 21

3.1 Experimental Setup . 22

3.2 Explaining the unlearning effect . 25

3.2.1 A didactic example . 25

3.3 Offline Reinforcement Learning as a special case of off-policy learning 26

3

3.4 How online off-policy Reinforcement Learning algorithms control D(π, πβ) 27

3.5 Quantifying policy-buffer state action visitation divergence 28

3.5.1 Defining a sample-based statistic . 28

3.5.2 Experiment . 30

4 Model Aligned Offline Reinforcement Learning (MAORL) (Known Unknowns) 32

4.1 General Framework . 32

4.2 Nearest State-Action (NSA) Queue Alignment . 34

4.2.1 Incorporating OOD transitions . 34

4.2.2 Relation to Online Reinforcement Learning . 35

4.2.3 Implementation Details . 36

4.2.4 Drawbacks . 36

4.3 Gradient-based Alignment . 37

4.3.1 Optimisation Problem . 37

4.3.2 Projected Gradient descent to obtain feasible buffer priority alignment 38

4.3.3 Incorporating OOD transitions . 39

4.3.4 Recovering hard alignment in a limiting case . 40

4.3.5 Convergence, Learning Rate and Kernel Choice . 41

4.3.6 Amortising the cost of maintaining kernel matrices 43

4.3.7 Further Implementation Details . 43

5 Learning and Using Uncertainty Penalised Markov Decision Processes (Unknown
Unknowns) 44

5.1 Uncertainty-penalised Markov Decision Process . 44

5.2 Using Spectral-normalised Gaussian Processes (SNGPs) to learn an uncertainty-penalised
MDP . 45

5.2.1 Developing and open sourcing a PyTorch SNGP library 46

5.2.2 Learning uncertainty-aware dynamics models . 47

6 Evaluation 49

6.1 GridWorld Results . 49

6.1.1 Methodology . 49

6.1.2 Training Return Log . 49

6.1.3 Final Policy Performance . 50

6.1.4 Comparison to model-based offline reinforcement learning methods 50

4

6.1.5 Prefilling OOD transitions . 52

6.1.6 Moving initial point . 54

6.1.7 Qualitatively assessing alignment . 55

7 Conclusion 56

7.1 Conceptual relationship to the state-of-the-art . 56

7.1.1 Buffer tuning . 57

7.1.2 What the dynamics model is used for . 57

7.2 Evaluation Limitation . 57

7.3 Future work and continuation plans . 58

7.3.1 Continuous control tasks and real world robotics 58

7.3.2 Optimisation strategies for priority assignment . 58

7.3.3 Quantification of off-policyness . 58

7.3.4 Can we do alignment in a model-free fashion? . 58

7.3.5 Explictly codifying the experience replay buffer . 58

A Experiment Details 60

A.1 DQN Hyperparameters . 60

A.2 Dynamics Model (SNGP) Hyperparameters . 60

B Attempted Optimisation Strategies 61

C GridWorld Environment Specifications 63

C.1 Environment . 63

C.2 State space (S) and reward function . 63

C.3 Action space (A) . 64

D Offline Data Collection 65

5

Chapter 1

Introduction

1.1 Motivation

Modern deep reinforcement learning algorithms operate in a fundamentally online learning paradigm
where trial-and-error based data collection and exploration forms an integral part of the training process.
While these methods have been extremely successful in simulated environments and games [1], the need
to collect large amounts of data during training for these data intensive algorithms is a major obstacle
facing adoption of reinforcement learning methods for real world problems. Trial-and-error learning can
be impractical, dangerous or expensive in real world tasks and environments. In areas such as healthcare
and autonomous driving, trying out a policy that fails can be extremely dangerous and costly.

It stands to reason that pairing reinforcment learning objectives with large, precollected static datasets
can be an effective way to make reinforcement learning an order of magnitude more useful, since this
decouples data collection from policy learning. In particular, supervised learning methods have found
great success because of their ability to efficiently scale performance with data and compute, both of
which are resources that are becoming ever more abundant. Prior work has established that applying
existing off-policy reinforcement learning algorithms without exploration does not transfer well [2] [3],
suggesting that there are open algorithmic challenges. Offline reinforcement learning methods describe
the class of algorithms that aim to resolve these deficiencies in order to make data-driven reinforcement
learning without exploration a reality.

Development of truly successful offline reinforcement learning algorithms could have a transformative
effect. Fundamentally, it would enable us learn decision making engines from large, diverse datasets that
are capable of considering future actions as well as present ones. Applications could include the training
of robots to perform many different tasks without intermediate interaction with the real world or the
creation of new kinds of recommender systems for personalisation on web-based services [4] that take
potential future user actions into account when making decisions.

1.2 Objectives

This is a research-driven project. As such, the objectives of the project materialised through our own
investigative research where we analysed the existing literature in a first-principles fashion and identified
a gap in the traditional analysis, which we validate through experimental work.

This investigative work forms the first contribution of our project and in it we specifically isolate
misalignment between the data sampling regime and the state-action visitation of the learned policy as
a fundamental algorithmic bottleneck when conducting reinforcement learning without exploration.

We frame our remaining objectives in terms of the high level contributions we hope to make:

6

1. Present an exposition of the buffer sampling misalignment problem and provide a theoretical ex-
planation for its existence.

2. Construct a statistic that quantifies the degree of misalignment.

3. Develop solutions to the problem and identify a new algorithmic framework that can be used to
categorise algorithms that aim to resolve the misalignment problem.

Since identifying a problem to solve fell within the remit of the project’s work, it was impossible to
identify our objectives ahead of time. This distinguishes our project in some ways since we both identify
and solve a problem within the scope of our work.

Alignment

Expected distribution of data sampled from replay buffer
Exploratory agent rollouts
State-Action Space: S ×A

Figure 1.1: Representation of a poorly aligned sampling regime (left) compared to a well aligned regime
(right). Notice that even if the training data covers the state-action visitation of the agent, it can still be
poorly aligned with the subspace the agent has visited.

1.3 Contributions

We present multiple novel contributions to the offline reinforcement learning field in this project:

1. An exposition of distributional misalignment between the data sampled from the experience replay
buffer and the state-action visitation of the learned policy as a challenge for offline reinforcement
learning. To our knowledge, this is the first time this problem has been explictly isolated (Chap-
ter 3).

2. A novel statistic that quantifies this distributional misalignment (Section 3.5).

3. The Model Aligned Offline Reinforcement Learning (MAORL) framework which characterises a new
class of algorithms that address the misalignment problem while also mitigating action distribution
shift (Section 4.1).

4. Buffer sampling alignment mechanisms that fit within the MAORL framework to address the mis-
alignment problem:

(a) A gradient-based alignment mechanism that uses techniques from convex optimisation to effi-
ciently evolve the buffer sampling priority assignment for sampling from our offline dataset in
a way that mitigates the misalignment problem (Section 4.3).

(b) A fixed capacity, queue-based alignment mechanism inspired by the way the experience replay
buffer is managed in online reinforcement learning algorithms (Section 4.2).

5. A proposal to use Spectral-normalised Gaussian Processes (SNGPs) to construct uncertainty-
penalised dynamics models in reinforcement learning. We also provide one of the first reference
open-source PyTorch implementations of SNGPs that can be immediately applied to regression
tasks (Chapter 5).

7

Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning provides us a framework within which to frame problems and solutions associated
with objective-oriented, sequential decision making tasks where long term planning can be required [5].

Markov Decision Process

The reinforcement learning problem is formally one of optimal control in a potentially incompletely known
Markov Decision Process (MDPs). We use MDPs to mathematically model the decision making process
and can use them to define the optimisation problem we try and solve with reinforcement learning solution
methods. In the context of reinforcement learning, we will define the underlying MDP using the tuple
(S,A, T ,R):

• State space (S): defines the space of all observations the agent can receive from the environment.

• Action space (A(s)): defines the space of all actions the agent can take, given it is currently at
state s ∈ S.

• Transition probability function (T): models the environment dynamics by computing the
probability that taking action a ∈ A from state s ∈ S leads to a transition to s′ ∈ S. This is usually
implicit and not directly known.

• Reward function (R): computes the numerical reward signal received by the agent upon taking
action a ∈ A in the current state s ∈ S to transition to destination state s′ ∈ S.

Agent

Environment

Action atNew state st+1 Reward rt+1

Figure 2.1: The agent-environment interaction in a Markov decision process [5]

We aim to use learning methods to learn an optimal policy. A policy π is defined as function π(a|s)
defining the probability distribution over actions a ∈ A that define how the agent acts optimally when
in state s ∈ S.

8

Acting optimally and rationally means we aim to learn a policy π∗ that maximises the expected
cumulative reward received from the environment. The cumulative reward for a finite trace of states
and actions s0, a0, s1, a1, ..., sT , aT , sT+1 is also defined as the return RT =

∑T
t=0 γ

tr(st, at, st+1) where
γ ∈ [0, 1) is a discounting factor and r : S × A × S → R denotes the instantaneous reward function.
Therefore, as practitioners we are able to define the agent’s objective by designing the reward function
to align with the overall objective.

Optimisation Problem

Using this, we denote the value of a state V π or a state-action pair Qπ under some policy π as follows:

V π(s) = Eπ[Rt|St = s]

Qπ(s, a) = Eπ[Rt|St = s,At = a]
(2.1)

Using Equation (2.1), we can define the objective of reinforcement learning as that of learning an
optimal policy π∗:

∀s ∈ S : π∗ = argmax
π

[V π(s)]

∀s ∈ S,∀a ∈ A(s) : π∗ = argmax
π

[Qπ(s, a)]
(2.2)

The Policy Improvement Theorem expresses that acting greedily with respect to the value function
(i.e. deterministic π′(a|s) = argmaxa Q

π(s, a)) will only improve on the original policy.

The Bellman optimality equation can be used to compute π∗ and can be extracted from Equation (2.2)
and Equation (2.1) via expectation algebra. It intuitively expresses that the value of a state under an
optimal policy must equal the expected return of the best action from that state.

V ∗(s) = arg max
a∈A(s)

Qπ∗
(s, a)

Q∗(s, a) = Eπ[Rt+1 + γmax
a′

Q∗(St+1, a
′)|St = s,At = a]

(2.3)

Solution Classes

We generally subdivide reinforcement learning algorithms as model-based or model-free.

1. Model-based learning is used when we can either directly access the transition dynamics of the
underlying environment T , or when we can estimate T well (typically using prior data and a powerful
function approximator like a deep neural network). We use the term dynamic programming to refer
to algorithms that compute optimal policies given a model of the environment as a Markov decision
process. Typically such methods use bootstrapping to efficiently update value estimates based on
neighbouring value estimates.

2. Model-free learning approaches rely on samples from the environment and so require no explicit
model of the environment, and retain no explicit information about the dynamics. Algorithms
founded on these principles are known as Monte-Carlo algorithms.

Temporal-difference learning combines the approaches of bootstrapping and sampling from the envi-
ronment to reap some of the benefits of both approaches. Bootstrapping yields lower variance and better
training efficiency while sampling from experience reduces bias.

Canonical one-step TD algorithms are Q Learning [6] and SARSA. Q Learning and SARSA illustrate
another subdivision in reinforcement learning algorithms which is based on how we perform exploration
during training.

9

1. On-policy methods explore and sample traces from the environment using the exact same up-to-
date version of the policy they are learning π. SARSA falls under this category, since the action
used to explore the next state St+1, At+1 ∼ π(.|St), as seen in the update step Equation (2.4).

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (2.4)

2. Off-policy methods introduce the notion of a behaviour policy πβ which is the policy used for
exploration. In general this means the actions sampled for exploration are not necessarily identical
to those that would be sampled using the learned policy, since in general πβ ̸=d π. Q Learning
is the canonical example of an off-policy algorithm. We can observe in the Q Learning update
step Equation (2.5) that we compute maxa Q(St+1, a) as part of the target value for the update
computation. This implicitly means the policy being learnt π is maximising with respect to the
subsequent action while the exploration policy πβ is not since it is stochastic with respect to the
optimum policy. Since πβ ̸=d π, this is an off-policy method.

Q(St, At)← Q(St, At) + α[Rt+1 + γ argmax
a

Q(St+1, a)−Q(St, At)] (2.5)

Note that Q Learning can be viewed as a direct extension of Equation (2.3).

By learning Q we are implicitly learning our optimal policy π as well by taking π(a|s) = argmaxa Q(s, a).

Deep Reinforcement Learning

Many recent successes of reinforcement learning [1, 7, 8] have been driven by combining reinforcement
learning with powerful deep neural networks as function approximators. We can approximate either (or
both of) the value function or policy function using deep artificial neural networks typically very suc-
cessfully. This alleviates fundamental problems with tabular methods like the exponentially exploding
memory requirements of storing Q-value estimates in high-dimensional state spaces and the lack of gener-
alisation which slows learning. Typically making use of deep neural networks in a reinforcement learning
context cannot be done naively and certain adaptations are required. This is because most deep learning
techniques are developed in a supervised learning domain making certain underlying assumptions that
are violated when adapted for use in reinforcement learning tasks.

Discrete Action Control

The most basic use of deep neural networks is to use them to approximate the value function. For a
neural network parameterised by weights w, we aim to learn an estimator Q̂w(s, a) ≈ Q∗(s, a). The Deep
Q-Network (DQN) [1] does this by using a neural network architecture where the state observation vector
is the input and the Q value estimates for all discrete actions are output simultaneuously at the output
neurons as illustrated by Figure 2.2.

S1

S2

S3

S4

h

h

...

h

h

A1

A2

S

Figure 2.2: DQN

10

The authors also transform the Q Learning update Equation (2.5) into a the Bellman Mean Square
Error loss function Equation (2.6) in order to be able to use gradient descent to optimise network weights
w and minimise this loss. This involves regressing our prediction onto a target y that is based on the
models value prediction of a future action.

yj =

{
rj st+1 is a terminal state
rj + γQ̂w(st+1, a) otherwise

LBMSE(w) =
1

2
E[(y − Q̂w(st, a))

2]

(2.6)

Note that this yields the following gradient descent Equation (2.7).

w ← w − α∇wLBMSE(w) where ∇wLBMSE(w) = E[(y − Q̂w(st, a))∇wQ̂w(st, a)] (2.7)

Training a DQN also involves an experience replay buffer which helps to stabilise learning and improve
data utilisation. The agent conducts rollouts, experiencing (s, a, s′, r) transition tuples that it stores into
a fixed size replay buffer. Each iteration during training the agent then trains the deep neural network
by sampling a uniform random batch from the buffer. A later innovation was to try and replicate the
benefits of Double Q Learning [9] by introducing the concept of a target network Q̂w̄ whose parameters
w̄ trail w by being frozen for a pre-determined number of iterations in order to stabilise learning by using
the slower improving target network to calculate the TD-target in the Bellman update.

Continuous Action Control (Policy Gradient Methods)

While discrete action settings are useful to think about in the context of games and as a foundation,
most real world applications such as robotics require continuous actions (e.g. motor velocities in a robot)
with high degrees of precision making them impossible or inefficient to quantise into discrete chunks. For
continuous control we primarily turn to policy gradient methods, where we aim to produce a policy
network π̂ that takes state observations as input and outputs actions. This is most commonly used in
domains like robotics where our actions might be numerical values like joint velocities or forces.

The probability of observing state-action trace τ then the optimal policy network with weights θ∗ is
the one that produces the maximum expected return i.e. θ∗ = argmaxθ E[

∑T
t=1 r(st, at)](st,at)∼pθ(τ). We

can use gradient ascent to compute this maximum.

The Policy Gradient Theorem tells us that given our expected return J(θ) can be approximated by
the empirical mean return over N traces, ∇θJ(θ) can be computed as follows:

J(θ) = E[
T∑

t=1

r(st, at)](st,at)∼pθ(τ) ≈
1

N

N∑
i=1

∑
t

r(si,t, ai,t) =⇒

∇θJ(θ) ≈
1

N

N∑
i=1

(

T∑
t=1

∇θ log πθ(ai,t|si,t))(
T∑

t=1

r(si,t, ai,t))

(2.8)

The remarkable result here is that we can remove the dependence on knowing the environment dy-
namics that knowing the probability of observing a trace pθ(τ) implies, enabling us to optimise J(θ) in a
model-free manner. If we approximate the policy using a deep neural network we can use gradient ascent
to maximise J(θ).

Actor-critic algorithms approximate the return calculation using a value-function approximator (the
critic) to approximate

∑T
t=1 r(si,t, ai,t) rather than sampling from the environment exclusively. This is

analogous to the bootstrapping-sampling tradeoff mentioned earlier and using an explicit critic can help
reduce variance during learning.

11

The Deep Deterministic Policy Gradient algorithm [10] (DDPG) is a continuous control extension
of DQNs to continuous action spaces which operates under the actor-critic framework. As with DQN,
DDPG utilises target networks and experience replay buffers to stabilise training.

Over time, novel variance control techniques such as using clipped double Q Learning have been pro-
posed, many of which have been incorporated into the Twin Delayed Deep Deterministic policy gradient
algorithm (TD3) [11]. TD3 and associated methods represent the current state-of-the-art for general,
continuous action deep reinforcement learning.

2.2 Offline Reinforcement Learning

Traditional reinforcement learning methods such as those discussed in Section 2.1 fundamentally work
in an online fashion. This means that exploring the environment and trial and error is fundamental to
the learning process. These methods are also typically very data intensive, meaning that to successfully
learn good policies they require a very large number of episodes. While this is effective in games and
simulated environments as evidenced by recent successes [1], this learning paradigm is untenable for most
real world tasks where repeatedly trying strategies that fail can be impractical to manage, expensive, or
outright dangerous such as in robotics and healthcare applications.

Offline reinforcement learning methods characterise a class of reinforcement learning methods that
aim to learn policies from diverse, static datasets without exploration in the real world. By decoupling
the data collection task from the policy learning task, successful offline reinforcement learning methods
aim to remove the barriers associated with application of reinforcement learning methods for real world
tasks and explore how to improve the data efficiency of reinforcement learning methods more generally.

2.2.1 Challenges

In principle, it should be possible to apply off-policy algorithms to our offline domain where exploration
is not allowed by initialising the experience replay buffer with our precollected dataset and preventing
any online data collection. However, as is discussed in [3] and [2], naive application of these methods
suffer from problems termed distributional shift :

• State distributional shift: the learned policy π might encourage the agent to visit states that
diverge significantly from the training data used to learn the policy. Extrapolating beyond the
support of the training data in general can be dangerous and can lead to the learned policy producing
erroneous actions in out-of-distribution states, so this is something that is best avoided. One way
to mitigate this problem is to place a bound on how far the learned policy π can deviate from the
offline buffer data distribution πβ . In [3], it is claimed that state distributional shift only affects
test time performance and not training.

• Action distributional shift: target values for Bellman updates in Equation (2.3) can depend on
value predictions for actions outside the support of the training data, leading to potentially erro-
neous target value predictions. Since we regress our value estimate onto the target when learning a
value function for Actor-Critic algorithms, this could actually propagate errors throughout the value
network. This causes an "unlearning" effect [3] where policy performance deteriorates drastically
as errors propagate throughout the value function. This is also termed bootstrapping error and is
further analysed in [2] and [12].

Action distributional shift is often exacerbated by the subtle maximisation operation involved in a Q
Learning update step. Since out-of-distribution predictions typically have higher variance, in expectation
we can expect target values to be biased towards out-of-distribution target estimates. Such small errors are
remedied in online reinforcement learning by optimistically exploring overestimated regions and receiving
corrective reward signals from the environment that force the agent to reduce its value estimate for
the action. This bias can be interpreted as being optimistic in the face of uncertainty and is a useful

12

characteristic in online algorithms for encouraging exploration of fringe regions. Offline reinforcement
learning algorithms often aim to reverse this by instead being conservative in the face of uncertainty since
remedial exploration is not possible.

2.2.2 Current Approaches

Offline reinforcement learning methods in the literature primarily propose algorithmic improvements to
mitigate the problem of action distributional shift by using various techniques to constrain the bootstrap-
ping mechanism and prevent it from sampling out-of-distribution action value estimates. In constructing
a taxonomy of the approaches in the field, we can first subdivide methods into model-free and model-based
approaches. We will first explore model-free methods.

2.2.3 Model-free offline reinforcement learning

These can generally be subdivided into policy constraint, pessimistic value functions, and uncertainty
estimation approaches, each of which try and tackle the action distributional shift problem in their own
way. These methods are described as model-free since they do not require access to a learned MDP for
training.

Policy Constraint Methods

Policy constraint methods aim to ensure that the actions we might want to use in computing the target
value for a Bellman update are close to the behaviour distribution induced by the static dataset πβ(a

′|s′).

When operating within an actor-critic framework, this constraint is applied during the policy improve-
ment step in make sure policy improvements do not diverge significantly from the behaviour policy πβ as
shown in Equation (2.9). The intention behind this is that this will constrain the actions used to construct
target value estimates when conducting value network improvements to be close to the support of the
training data, diminishing training problems from bootstrapping from out-of-distribution predictions.

Q̂π
k+1 ← argmin

Q
E(s,a,s′)∼D[(Q(s, a)− (r(s, a) + γ Ea′∼πk(a′|s′)[Q̂

π
k (s

′, a′)]]

πk+1 ← argmax
π

Es∼D[Ea∼π(a|s)[Q̂
π
k+1(s, a)] s.t. D(π, πβ) < ϵ

(2.9)

In general, these approaches can suffer from two main drawbacks:

• Constraining policy improvement with respect to πβ can be too conservative and can prevent
significant improvement of the learned policy over and beyond our modelling of the dataset.

• Many of these approaches require us to model the static dataset to obtain a more convenient form
for πβ which adds complexity and can lead to a loss of precision.

Examples of this approach include BEAR [12], BCQ [2], and ABM [13]. These algorithms differ in
many ways but an important consideration is the choice of the divergence metric D, which is often an
f -divergence of some kind. These are discussed in Table 2.1.

Policy Penalty methods have a very similar approach except that they incorporate the constraint
into the Q-values themselves by regularising our target value estimate using the divergence of the policy
iterate with respect to the behavioural policy. This means that the policy also learns to avoid deviating
from πβ on future time steps as well since penalties for doing so are incorporated into our value estimate.
This has been discussed in the formulation of BRAC [14]. This yields a modified actor-critic algorithm

13

BCQ [2] BEAR [12] ABM [13]
D policy
divergence
measure

The VAE modelling the
data πβ aims to max-
imise the state-conditioned
marginal likelihood.

Maximum Mean Discrep-
ancy (MMD).

Kullback–Leibler (KL) di-
vergence with the cur-
rent advantage weighted
behaviour model.

πβ model estimate Actions are sampled from
VAE used to model the be-
haviour policy distribution.

Actor policy network is con-
strained towards behaviour
policy support during train-
ing by using dual gradient
descent to solve constrained
optimisation problem.

Advantage-weighted be-
haviour model computed by
maximising the advantage-
weighted log likelihood,
using gradient ascent like
policy gradient methods.

Table 2.1: Comparison of BCQ, BEAR and ABM approaches.

with critic and actor updates as follows.

Q̂π
k+1 ← argmin

Q
E(s,a,s′)∼D[(Q(s, a)− (r(s, a) + γ Ea′∼πk(a′|s′)[Q̂

π
k (s

′, a′)]− αγD(πk(.|s′), πβ(.|s′)))2]

πk+1 ← argmax
π

Es∼D[Ea∼π(a|s)[Q̂
π
k+1(s, a)]− αD(π(.|s), πβ(.|s))]

(2.10)

Pessimistic Value Functions

Pessimistic Value Functions present an alternative to imposing policy constraints in an actor-critic frame-
work and are implemented by directly regularising the value function or Q-function in a way that avoids
overestimation for out-of-distribution actions by adding a conservative penalty term, yielding the objective
Equation (2.11) where different methods are distinguished by their choice of C.

Ē(B,ϕ) = αC(B,ϕ) + E(B,ϕ) (2.11)

One of the benefits of this approach is that we don’t need to explicitly model the behaviour policy.
It also is formulated in a manner that makes it applicable for both value-based methods as well as
actor-critic methods unlike policy constraint methods which require a policy representation to constrain.
The state-of-the-art approach here is CQL [15] which has the theoretical guarantee that conservative
value function lower bounds the true value function in expectation (i.e. Eπ(a|s)[Q̂

π(s, a)] ≤ V π(s)).
The authors formulate the final optimisation of the value function in a way that includes the standard
Bellman Mean Squared Error, and a term that aims to minimise in-distribution value estimates further
while introducing a counter-balancing Q-value maximisation term that aims to maximise value estimates
for actions sampled from πβ , and a regularisation term constraining the policy µ being used to effectively
act out of distribution. Using a regulariser R(µ), Equation (2.12) defines the CQL optimisation objective.
A typical choice of R(µ) might be a KL-divergence with a prior distribution.

CQL(R) : min
Q

max
µ

α(Es∼D,a∼µ(a|s)[Q(s, a)]− Es∼D,a∼π̂β
[Q(s, a)]) +

1

2
EBMSE +R(µ) (2.12)

Uncertainty Estimation Methods

Uncertainty estimation based techniques aim to estimate the epistemic uncertainty of the Q-function and
use this to detect out-of-distribution actions. Formally, these techniques might aim to learn an uncertainty
set or a distribution over possible Q-functions from the dataset D and use this to determine how uncertain
any given value prediction is during training. Once we can estimate the uncertainty associated with a
value prediction, we can compute a conservative estimate of the Q-function that corresponds to the lower
confidence bound value estimate by adjusting naive value estimates downwards based on how uncertain
the estimate is. Since out-of-distribution actions will have very high epistemic uncertainty (since they
were never explicitly sampled and so there is no ground truth data associated with them), this will mean

14

that out-of-distribution actions are discounted when during policy improvement which should deter out-
of-distribution actions being sampled.

New work such as EDAC [16] and UWAC [17] utilise ensemble networks and Monte-Carlo dropout
respectively to compute uncertainty estimates - these uncertainty estimation techniques build on [18]
which shows that dropout training in deep neural networks can be cast as approximating Bayesian
inference in deep Gaussian processes, and [19] which shows that ensembles of deep neural networks can
very successfully be used to approximate predictive uncertainty on regression and classification tasks. A
key takeaway from UWAC is that the implementation scales the size of the loss during training of the
value function approximator inverse proportionately to the uncertainty. This is an effective technique at
reducing the weighting afforded to out-of-distribution Bellman Errors during training.

2.2.4 Model-based offline reinforcement learning

Model-based offline reinforcement learning methods can be distinguished from model-free methods by
their use of learned predictive dynamics models. Predictive models can be learned from the large transition
data making up the offline dataset through standard supervised learning to construct predictive models
that predict the reward and next state given a current state and action T (st+1, rt+1|st, at).

Two model-based methods that provide solutions to mitigate action distributional shift in similar ways
are MOPO [20] and MOReL [21]. Both of the methods propose adapting the learned MDP to penalise
out-of-distribution actions in order to induce behaviour that is conservative against exploring outside
the support of the offline data. This is important since the predictive model is only likely to be correct
within the support of the offline data used to train it, and without guarding against out-of-distribution
exploration the agent could potentially exploit erroneous reward predictions from the model far from
where it was trained. Assuming we have a measure of uncertainty u(s, a) for any given state-action tuple,
the approaches adapt the MDP as follows:

1. MOPO [20] modifies the reward function r̃(s, a) = r(s, a) − λu(s, a) to be conservative in the face
of uncertainty.

2. MOReL [21] only changes the reward function to a penalty value k if u(s, a) is greater than a
threshold, at which point the agent also reaches a terminal HALT state.

2.3 Uncertainty Estimation in Deep Neural Networks

While deep neural networks have been immensely successful in recent times and have been deployed in
very many real world applications for predictive tasks, basic neural networks still cannot quantify their
uncertainty or quantify what they know what they don’t know effectively. This is a limiting factor for
deployment of vanilla deep neural networks in safety critical applications. In applications like medical
diagnosis, if the neural network knows when it is uncertain about its prediction then this might prompt
human intervention in the process. We break down predictive uncertainty into three components [22]:

• Aleatoric uncertainty is irreducible through statistical means and comes from inherent noise in the
data implicit in the way we observe and collect the data.

• Epistemic uncertainty is the caused by knowledge gaps in the model itself. Causes might be the
model architecture or the way in which provided data is utilised.

• Distributional uncertainty is related to the uncertainty caused by a change in the input-data dis-
tribution, or the difference between the training and test data distribution (an example difference
is covariate shift).

15

2.3.1 Gaussian Process Regression

Gaussian process regression bears many similarities to Bayesian linear regression. A Gaussian process
[23] is described as a collection of random variable, any finite subset of which have a joint Gaussian
distribution. As such we can characterise a Gaussian process by a mean function m(x) and a covariance
function k(x, x′), which are defined with respect to a true process f(x). The covariance function specifies
the covariance between pairs of random variables.

Typically we have m(x) = 0. A standard choice of covariance function is the squared exponential
kernel as defined by Equation (2.13). Conceptually this is similar to having a Gaussian prior in Bayesian
linear regression. k implies a distribution over candidate functions over any set of inputs if we sample
an infinite stream of output values from f ∼ N (0,K(X,X)) given input points X. Note that l in
Equation (2.13) is known as the length scale parameter, which controls roughly the distance in input
space we would need to travel before the functions sampled change dramatically. Often we simply set l
to 1.

cov(f(xp), f(xq)) = k(xp, xq) = exp(
1

2l
|xp − xq|2) (2.13)

Being able to sample random functions from a prior is useful as we can apply a Bayesian treatment to
the problem now to compute a predictive distribution which enables us to model uncertainty in predictions
made using a mean sample function on different inputs of data at test time.

Predictive Uncertainty

Computing the predictive distribution amounts to attempting to compute the probability density function
p(y∗|Y,X , x∗) where x∗ is our test input and where we have trained on data examples {xn, yn}Nn=1 with
xn ∈ X and yn ∈ Y, the training dataset.

We are trying to model some true function f(x) where we have access to noisy observations yn =
f(xn) + ϵn, ϵn ∼ N (0, σ2) where ϵ is independent Gaussian noise representing irreducible aleatoric
uncertainty. We use a covariance function K to compute the predictive distribution Equation (2.14) as
follows through careful application of the product rule of probability on the joint probability distribution
p(y∗,Y|X , x∗).

y∗|Y,X , x∗ ∼ N (ȳ∗,Σ∗) where

ȳ∗ = K(x∗,X)[K(X ,X) + σ2
nI]

−1y

Σ∗ = K(x∗, x∗)−K(x∗,X)[K(X ,X) + σ2
nI]

−1K(X , x∗)

(2.14)

While this closed form solution is convenient to analyse, practical implementations of Gaussian Pro-
cess Regression typically use low rank approximations due to the high computational cost of inverting
K(X ,X) + σ2

nI especially when dealing with large amounts of data.

2.3.2 Deep Ensembles

[19] presents a simple, parallelisable approach to constructing epistemic uncertainty estimate. The authors
propose using an ensemble of deep neural networks rather than one single one. If we initialise each network
with slightly different parameters, then each deep neural network might learn slightly different function
approximations by finding different local optima during training.

At inference time we can treat each of the outputs as samples from a random variable. Using this
perspective, we can estimate a sample mean and spread from the predictions. On in-sample inputs close
to the training data where we are interpolating data close to training examples there will be more mutual
agreement between the constituent networks due to the presence of similar ground truth examples. This

16

leads to lower predictive uncertainty and variance in outputs. When extrapolating far from the support of
the training data, it is more likely that the networks will disagree more significantly about the prediction.
This makes taking the spread of predictions is a useful approximation to the true underlying epistemic
uncertainty of the ensemble network.

While the random initialisation of the different networks in the ensemble can often be sufficient to
ensure good diversity in predictions, we can boost diversity by using bagging, where ensemble members
are trained on different subsets of the training set to decorrelate their predictions and boost diversity.

2.3.3 Spectral-normalised Gaussian Processes

Spectral-normalised Gaussian Processes present a deep learning architecture that can produce high quality
uncertainty estimates using only a single Deep Neural Network. The authors identify that distance
awareness is important for good uncertainty estimation through a rigorous minimax analysis [24], where
the distance between the input test example and previously seen training examples can be used to return
a uniform distribution over output labels if the input is out-of-domain but place more probability mass
on prediction when more certain if the data to predict is close to the training data used to train the
predictive model.

Since Gaussian Processes with suitable kernels such as the squared exponential kernel Equation (2.13)
maintain distance awareness property, the authors propose adding a Gaussian Process layer (GP layer)
to the end of a standard Residual Neural Network architecture so that we can combine this distance
awareness with the deep feature extraction and powerful classification abilities of deep neural networks.
To ensure this is computationally scalable, this is approximated using a Laplace approximation to the
random feature expansion of the Gaussian Process.

However, simply adding a Gaussian Process layer on top of the last hidden layer of a neural network
might not immediately work since distances using the hidden representations in a DNN might not repre-
sent a meaningful distance in the input data space which is really what we desire. The authors propose
applying spectral normalisation to weights in each residual hidden layer after each gradient-based update
step as a way to preserve distance awareness.

Preserving a correspondence between the semantic distance of points in the hidden representation of
an input point h(x) and the point x itself amounts to satisfying the bi-Lipschitz condition Equation (2.15)
where 0 < L1 < 1 < L2.

L1 ∗ ∥x− x′∥ ≤ ∥h(x)− h(x′)∥ ≤ L2 ∗ ∥x1 − x2∥ (2.15)

The authors of [24] realised that in modern deep learning architectures composed of residual blocks
h(x) = hL−1 ◦ ... ◦ h1(x), where hl(x) = x+ gl(x) and gl(x) = σ(Wlx+ bl), bounding the residual maps
less than 1 will ensure that h is distance preserving by the definition of Equation (2.15). This is because if
for some 0 < α ≤ 1 if ∥gl(x)− gl(x

′)∥ ≤ α∥x−x′∥ then Equation (2.15) is satisfied with L1 = (1−α)L−1

and L2 = (1 + α)L−1, making h distance-preserving. A proof of this result can be found in [24].

The way in which the authors propose we satisfy this is to ensure the weight matrices in the residual
blocks have spectral norm (largest singular value) less than 1. At every training step, we first estimate
the spectral norm λ̂ ≈ ∥Wl∥2 using the power iteration method before then normalising the matrix with
the step Wl = c ∗Wl/λ̂ if c < λ̂, where c is a hyperparamter that can be used to adjust the spectral norm
bound on Wl.

This enables classification with accurate epistemic uncertainty estimates based on distance from the
data manifold, as can be seen in Figure 2.3). We can produce the following uncertainty detection on a
naive 2-class dataset extracted from the Two Moons sklearn dataset.

17

Figure 2.3: Epistemic uncertainty estimate on two-class dataset. The data in red represents out-of-
distribution data which the network accurately estimates high uncertainty for. My open-sourced PyTorch
SNGP implementation, this figure, and further study into SNGPs can be found at [25]

2.4 Convex optimisation

Convex optimisation problems are optimisation problems concerned with minimising convex functions
with feasible solutions defined by convex sets.

A function f is convex if satisfies the following condition:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (2.16)

Twice differentiable functions can be shown to be convex if their second derivative (or Hessian matrix
of second partial derivatives) is positive (or positive definite). This can be a convenient way to illustrate
a function is convex.

A set C is convex if ∀x, y ∈ C and ∀θ ∈ [0, 1] we have:

θx+ (1− θ)y ∈ C (2.17)

We can therefore summarise a convex optimisation problem as minx f(x) s.t. x ∈ C. One very
useful property is that every local minimum point in a convex optimisation problem is also a global
one. This, alongside, the amenability of these problems to gradient-based methods, has led to numerous
techniques to efficiently solve the various subclasses of convex optimisation problems.

2.4.1 Standard form

If our objective f is convex, then a convex optimisation problem is deemed to be in standard form if
written in the following way:

min
x

f(x)

s.t. gi(x) ≤ 0 ∀i
hj(x) = 0 ∀j

(2.18)

where inequality constraint functions gi : Rn → R are convex and equality constraint functions
hj : RN → R are affine transformations of the optimisation variable x.

18

2.4.2 Projected Gradient Descent

Convex optimisation problems are especially amenable to gradient-based solutions due to the fact that
local minima are also globally minimum. Unconstrained convex optimisation can be solved with standard
gradient descent. For constrained problems, we cannot guarantee that each intermediate iterate remains
feasible, and so we cannot guarantee the final solution is a feasible one either. We can augment the
standard gradient descent update with a projection operation that projects an intermediate iterate x̄t+1

below onto the convex set C defining the problem constraints.

x̄t+1 = xt − α∇L(xt)

xt+1 = projC(x̄t+1)
(2.19)

This can be an efficient way to find a solution to the problem where a direct solution is impossible or
computationally expensive. Determing a good projection is highly dependent on the constraint set C.

Projection onto a simplex

One especially interesting convex set is the simplex (∆ ⊂ RN), defined as follows:

∆ = {x ∈ RN |1Tx = c & x(n) ≥ 0 ∀n ∈ 1 . . . N} (2.20)

Note that when c = 1, ∆ is known as the probability simplex since it encompasses the set of vectors
that satisfy the constraints to parameterise a categorical probability distribution. For this reason, it is of
special interest to find good projections onto ∆ since in many problems we want to optimise an objective
with respect to a probability vector.

Finding a good Euclidean projection x ∈ ∆ of some vector x̄ ∈ RN can be defined through the
following optimisation problem:

min
x

1

2
||x− x̄||2 s.t. ∀n ∈ {1, .., N} : x(n) ≥ 0 1Tx = c (2.21)

A sorting based approach to solve this was proposed in [26], yielding the following algorithm:

Algorithm 1 Procedure for projecting x̄ ∈ RN onto ∆

1: procedure ProjectOntoSimplex(x̄)
2: y ← x̄ sorted descending
3: K ← max1≤k≤N{k|(

∑k
r=1

ur−a
k < uk}

4: τ =
∑K

k=1 uk−a

K
5: For n = 1, . . . , N , set xn = max{yn − τ, 0}
6: return x
7: end procedure

Follow on approaches [27] have introduced new performance improvements and have managed to bring
the observed computational complexity of the projection down from O(N logN). Interested readers are
encouraged to read [27] for a summary of existing approaches.

19

2.5 Ethical Discussion

This project aims to develop novel approaches to improve the state of the art in offline reinforcement
learning without a specific practical application in mind. While we ourselves do not have any specific
practical aims in mind, we must consider the potential for misuse of work produced in this project.

One of the promises of offline reinforcement learning is the ability to develop decision making engines
from data. The novel algorithms proposed may be leveraged by actors with malicious intent to develop
automated agents that could do genuine harm in the real world.

With the focus of offline reinforcement learning on producing a data-driven reinforcement learning
paradigm, this directly benefits holders of large amounts of data such as government organisations and
big technology companies. In many situations these methods might be leveraged to automate decision
making for objectives that do not align well with with the good of wider society due to profit incentives or
political goals that can be obtained by application of successful offline reinforcement learning techniques.
Using offline reinforcement learning algorithms, bad actors with vast data resources can be more efficient.

Another consideration that comes with moving to a data-driven paradigm for reinforcement learning is
the way in which we use and store data. All datasets we collect for our experiments are constructed using
benchmarks in simulation and no personal data is involved in any way at any point in the process. As
robots and other applications of offline reinforcement learning begin to move into the homes of consumers
and interact with real people, designers of robots that leverage offline reinforcement learning methods to
learn how to do tasks will have to be mindful of the potential use of personal data and the dataset inherited
bias that can influence the policies learned. This will become more relevant as practical applications
emerge.

Looking at the bigger picture, machine learning training generally requires a significant amount of
computation power, and therefore can consume a lot of electricity. We must be mindful when running
large machine learning experiments on compute clusters that this incurs a significant power demand
which may be contributing to climate change if facilitated through non-renewables.

20

Chapter 3

The Sampling Alignment Problem in
Deep Offline Reinforcement Learning

In this chapter, we present analysis that isolates the misalignment between the buffer sampling distribu-
tion and the policy state-action visitation distribution as a cause of performance degradation in offline
reinforcement learning. We argue that this is distinct from action distributional shift, a related issue
present when training reinforcement learning algorithms without exploration that has been investigated
in detail in the literature [3] [2]. To our knowledge, this is the first time misalignment has been explicitly
isolated as a distinct issue and we expect it can open up new avenues for algorithmic development.

We started our investigation by investigating an idealised but as yet unconsidered attempt at doing
offline reinforcement learning where we know what we don’t know and are able to manually apply negative
rewards ahead of time to actions outside the support of our training data. While this is an unrealistic
set up, it helps us disentangle the causes of performance degradation in off-policy offline reinforcement
learning methods since manually penalising out-of-distribution actions with negative rewards will deter
the agent from learning policies that take it away from the data it was trained on. By making these
actions terminal, we can also make bootstrapping from out-of-distribution actions impossible.

Under the hypothesis that action distributional shift is indeed the only bottleneck present when
training a reinforcement learning without exploration, this manual reward labelling would be sufficient to
ensure performance on par with an online baseline agent since no actions are now outside the support of
the training data. One perspective to take is that we have a perfect uncertainty estimator for detecting
out-of-distribution actions in a uncertainty estimation based offline reinforcement learning algorithm.

In this chapter, we discuss the following:

• We find experimentally that despite ablating action distributional shift as a problem, naively ap-
plying a DQN algorithm in an offline fashion still lags online learning in terms of performance.

• We isolate divergence between the buffer sampling distribution and the on-policy state-action visi-
tation distribution (visualised in Figure 1.1) as a fundamental algorithmic bottleneck that explains
this performance gap. Since much of the algorithmic development that has occurred in the offline
reinforcement learning community has been motivated primarily to mitigate boostrapping error
caused by action distributional shift [2] [12] [13] [14] [15], this insight opens up new avenues for
algorithmic development in the offline reinforcement learning field.

• We propose a metric to approximately quantify this divergence and illustrate how online agents are
able to control this divergence implicitly, contributing to their superior performance.

We also hypothesise that the better alignment between sampling distribution and policy state-action
visitation in model-based algorithms explains the question posed by the authors of the model-based offline

21

reinforcement learning algorithm MOPO [20] of why model-based approaches are currently better than
their model-free counterparts.

3.1 Experimental Setup

To investigate whether naive application of reinforcement learning without exploration is hindered solely
by action distributional shift, in our experimental set up we need to make it impossible to bootstrap off
out-of-distribution value estimates. One way to do so is to collect every conceivable (state, action, next
state, reward) transition tuple that can be experienced into our offline dataset. Transitions that take the
agent out-of-distribution are explictly encoded as terminal and penalised with negative rewards. In this
way we are able to guarantee that the offline agent is able access all transitions an online agent could
possibly experience through exploration and the only remaining difference between online and offline
training regimes is now the order and distribution of the transitions sampled for learning.

GridWorld

For the environment we forked the gym-minigrid repository to construct a suite of 21×21 2D GridWorld
tasks. We illustrate GridWorld-v0 in Figure 3.1. Each state is encoded by a three dimensional state
vector which includes the x and y position as well as the orientation {North,South,East,West}. The
discrete action set is defined A = {move forward, rotate left 90o, rotate right 90o}, meaning that moving
to an adjacent state can require multiple actions to first orient the agent before moving forward. We have
a sparse reward function, with Lava states (L) and Goal states (G) terminating and receiving negative
and positive rewards respectively. Further details about the dynamics of our GridWorld implementations
can be found in Appendix C.

Figure 3.1: 21× 21 GridWorld-v0 used for experimentation. The green state denotes the goal state. The
orange lava states are used to model out-of-distribution regions. We can dynamically vary the location
of these lava regions to auto-generate different test environments.

To validate our reward set up and to construct a baseline, we train an online Double DQN agent with
a linearly decaying ϵ-greedy exploration strategy. We use 2-step returns and apply a small step cost to
encourage quickly reaching the goal. Hyperparameter details can be found in Appendix A.

Static experience replay buffer construction

We collect an offline dataset by collecting each possible transition that the agent could have theoretically
taken in the environment. This was the primary motivation for constructing a discrete action environment
for testing rather than a continuous control task. In this way, we can make sure that the data available to

22

our offline agent is identical to the online agent and bootstrapping error cannot be a cause of performance
degradation. In line with major model-free offline reinforcement learning algorithms published to date
[12] [2] [14] [15] [13], we sample uniform randomly from our static experience replay buffer.

Results

Surprisingly, we find performance of the offline DQN agent to be significantly worse than the online agent
baseline. We illustrate the mean rollout returns as training progresses of the optimum policy learned
by the agent at the end of each episode on the GridWorld-v0 environment. The offline agent performs
so poorly despite all other hyperparameters being the same and having access to all possible transitions
that can be experienced by the online agent in the static replay buffer.

Figure 3.2: Mean Undiscounted Return Each Rollout over 5 Random Seeds

By inspecting individual training logs and plotting the distance from the goal at the end of each
episode, we notice that like the online agent the offline agent does in fact learn good policies at certain
points during training that reach the goal. However, unlike the online agent, it seems to consistently
unlearn these policies shortly thereafter after learning more.

Figure 3.3: Mean Rollout Terminal State Distance from Goal State over 5 Random Seeds

The only difference between the agents can be clearly identified as the order and distribution of
transitions being sampled as a subset of the pool of available transitions. One of the benefits of working
in a 2D environment is we can easily visualise this sampling distribution to understand how it evolves
as training progresses by calculating the relative frequency of transitions starting at each each state in
the online replay buffer. We can visually see in Figure 3.4 that the buffer sampling distribution of the
online agent moves in tandem with the last window of transitions it has experienced and used to populate
the buffer. This is expected since in the DQN algorithm we use explored transitions to populate a fixed
capacity experience replay buffer which we later sample uniform randomly from.

23

(a)

(b)

Figure 3.4: Figure 3.4a illustrates how the relative frequency of transitions beginning at each state evolves
in the online buffer as training progresses. Figure 3.4b illustrates how the states explored by the agent
evolve. The online agent is able to exploit a path to the goal and the buffer contents are aligned with the
state-action visitation of the agent.

For the offline agent, as expected, this sampling distribution does not change as the replay buffer is
fixed. All of the stored transitions are equally likely to be sampled, which in our case means any visitable
transition has an equal likelihood of being sampled. As the policy is optimised, the divergence between
the states and actions visited by the agent and those sampled grows. Eventually, good policies that are
moving in the region of the goal state are unlearned and the agent does not recover.

(a)

(b)

Figure 3.5: Figure 3.5a illustrates how the priorities assigned to transitions beginning at each state
changes in an naive offline set up where our data collection is uniform over the non-lava region. Figure 3.5b
illustrates how the states explored by the agent evolve. The difference between these stays large.

This suggests that having very poor alignment between the on-policy state-action visitation given
access to the true MDP and the buffer sampling regime can have a detrimental influence on the training
of offline reinforcement learning algorithms. We make the argument that this is distinct from the action
distributional shift/bootstrapping error class of problems discussed heavily in the literature due to the
fact that in no situation does the offline agent actually sample an out-of-distribution transition when
computing its Q Learning target in our experimental set up. To our knowledge, the misalignment problem
has never been explictly identified in the literature.

Explaining why this derails training is the focus of much of this chapter.

24

3.2 Explaining the unlearning effect

We have just experimentally seen how even in the absence of out-of-distribution bootstrapping, offline
reinforcement learning can fail. Our experiments suggest that the data sampling distribution is a core
reason why. We now attempt to provide an explanation for this problem. We begin by constructing
an explanatory example to illustrate how off-policy learning with function approximators can lead to
unlearning of good policies during training. After this, we make the argument that offline reinforcement
learning is really a limiting case of off-policy learning and consider how off-policy online methods control
off-policyness of the data they learn from.

3.2.1 A didactic example

As discussed in [5], naively learning from off-policy data collected using a policy πβ that is significantly
different our current policy is significantly more challenging compared to using on-policy data from
rollouts of π, in the presence on function approximation. We construct a simple, instructional example
to demonstrate the problem in Figure 3.6 of unlearning which can happen when learning from off-policy
data. We attempt to learn a value function Vθ over states via a TD error based gradient update.

s1
0

s2
0

s3
+1

Figure 3.6: Environment set up. We can assume that our value predictions for each state are interlinked
because we use a deep neural network with global parameters θ to approximate Vθ. We can also assume
that the states form a part of a larger MDP. s3 represents our terminal goal state in this MDP.

Figure 3.6 illustrates a small part of a larger MDP for which we seek to learn a value function using
a function approximator. s3 is our terminal goal state, and s1 is a state that can be reached directly
before it. We can assume that due to global parameterisation of the function approximation, the value
prediction of all the states are linked such that if the value prediction for any one state changes by x,
this results in a value prediction change of 0.1x for the other states. We assume the reward is solely tied
to the state, and that we have a TD update in the following form:

V (s) = V (s) + α(r + γV (s′)− V (s)) (3.1)

We will assume that γ = 1 and α = 0.1, meaning that sampling the step (st → st+1) yields the update
V (st) = 0.9V (st) + 0.1(rt+1 + V (st+1)).

Since we are using a randomly initialised function approximator to represent our value function, we
can assume there is some noise initially in our value function estimates as shown in Figure 3.7.

Vθ(s1) Vθ(s2) Vθ(s3)
0.01 −0.04 0.03

Figure 3.7: Iteration 0 (Random Vθ initialisation)

25

If the agent samples the step (s1 → s3), we end up updating Vθ(s1) as per Equation (3.1) with an
increase of 0.102. This means the other states increase by 0.0102.

Vθ(s1) Vθ(s2) Vθ(s3)
0.112 −0.0298 0.0402

Figure 3.8: Iteration 1 (Samples (s1 → s3))

The policy that maximises return accoding to the agent is one through s1 and terminating at s3,
which is desirable. If our sampling strategy was to sample based on the on-policy visitation distribution,
we would again soon sample (s1 → s3). This time, this would yield an update of 0.09282, influencing
the other state value predictions by 0.009282. We can see that this is good. We are propagating reward
information from s3 to a predecessor state s1. This will help construct a good optimal policy that
maximises return by reaching s3.

Vθ(s1) Vθ(s2) Vθ(s3)
0.20482 −0.019918 0.049482

Figure 3.9: Iteration 2A (On-policy update sampling (s1 → s3))

However, if we are learning from off-policy data, we might instead sample (s1 → s2). In this situation,
we would see an update of −0.01418 towards V (s1) and −0.001418 for the other states.

Vθ(s1) Vθ(s2) Vθ(s3)
0.19064 −0.021336 0.048064

Figure 3.10: Iteration 2B (Off-policy update sampling (s1 → s2))

We can see here that V (s1) decreases as expected, but so too does V (s2). It is worth considering
what might happen if we now repeatedly sampled (s1 → s2) without ever visiting the states after s2 in
the MDP to obtain a concrete reward signal. We can see that each time we decrease V (s1) to be closer
to V (s2), V (s2) will also decrease! Since we do not process the transitions after s2 in the wider MDP
in a systematic way, our predictions of the values in this region will decrease over time. V (s2) becomes
a constantly decreasing moving target for V (s1). In this way V (s1) will eventually decrease to a point
where we forget the good policy to s3, our target goal state.

While this may seem a little bit contrived in our 3 state set up, it is worth recalling that when learning
from sparse reward data, a very small proportion of transitions have strong reward signal. While we may
not sample the same transition again and again, we will sample many nearby transitions that similarly
have 0 reward. Sampling in an unstructured manner has the potential to drown out these reward signals.
Carefully ordering which transitions we do sample by aligning them with the states the agent would visit
would correct for this. The way to correct for the ever decreasing V (s2) is to instead sample and process
transitions in a more ordered fashion more closely linked to the states and actions we would visit. For
instance, it is in fact okay to sample (s1 → s2) but then we should also be sampling transitions that lead
out from s2 so that our V (s2) is based on some downstream reward signal. This helps correct for both
over and under predictions and it means that ultimately, value predictions are based on reward signals
propagated through their adjacent states and not simply on vacuous bootstrapping.

3.3 Offline Reinforcement Learning as a special case of off-policy
learning

In off-policy learning we seek to learn a value or policy function for a target policy π given access to a
experience collected using a different behaviour policy πβ , with πβ ̸=d π. Since we sample transitions
based on πβ , it controls which transitions are used to optimise π. We will denote the divergence between
these as D(π, πβ). When D(π, πβ) is large, then the distribution of the data used to perform updates does

26

not match the current on-policy distribution and we can consider D(π, πβ) to denote how "off-policy"
our data sampling distribution is.

In the context of offline reinforcement learning, we learn our policy from a static offline dataset.
The data sampling distribution from our replay buffer defines our behaviour policy πβ in this situation.
In typical model-free offline reinforcement learning algorithms, we sample uniform randomly from the
precollected replay buffer, which implies that πβ does not evolve over the course of training. In some
sense, this makes offline algorithms as off-policy as it gets.

When we have a fixed πβ , attempting to improve π beyond πβ will increase the divergence between
the current policy and the data collection policy, D(π, πβ). In the presence of function approximation,
this can lead to unlearning during training. We propose that the lack of precise consideration of the
buffer sampling mechanism is a drawback for existing model-free offline reinforcement learning methods,
even those that successfully counteract the problem of action distributional shift.

3.4 How online off-policy Reinforcement Learning algorithms con-
trol D(π, πβ)

In successful off-policy online reinforcement learning algorithms such as DQN [1] and DDPG [10], we
typically see both πβ and π evolve as training goes on. The former evolves typically due to mechanisms
such as fixed sized experience replay buffers that evict old transitions after a fixed number of steps and
because fundamentally, in both of these algorithms, the data collection policy πβ is actually tied to π in
some sense, meaning as we improve our policy we keep πβ .

1. In the discrete action DQN algorithm, the exploration policy is epsilon-greedy with respect to π.
The parameter ϵ controls strictly to what degree the two are tied, and typically we see ϵ decayed
as the learning process proceeds. This mechanism gradually reduces the difference between π and
the exploration policy. In DDPG, the authors opt to add Ornstein-Uhlenbeck noise to the current
non-stochastic policy π to control exploration.

Clearly policy improvements will implicitly influence the data-collection policies in both algorithms
since these are noise-augmented versions of the current policy. We note that model-free offline
reinforcement learning algorithms generally lack this kind of mechanism.

2. In both of these algorithms, the use of the experience replay buffer introduces a certain amount
of off-policyness. This is because the buffer stores transitions collected using older versions of the
policy. As analysed in [28], the number of policy optimisation steps present between the oldest
transition and the newest transition in the experience replay buffer can be a good proxy for off-
policyness of the data used for learning. The finite capacity of the replay buffer therefore acts as
a control on the degree of the divergence of the data sampling distribution πβ from the current
policy π. It is no surprise therefore that studies into the experience replay buffer [28] have found
that having a very large replay buffer can degrade performance with the DQN algorithm.

These mechanisms typically implicitly mean that the divergence between πβ and π does not grow
unbounded in an online set up with exploration. One can make the argument that successful, off-
policy deep reinforcement learning algorithms such as DQN and DDPG are not truly off-policy, since the
exploration policy is directly coupled to the most recent policy at each iteration of training.

Model-free offline reinforcement learning methods lack this mechanism since they cannot explore the
environment to the populate a buffer of transitions to learn from. We propose that this distinction
partly answers the question posed by the authors of MOPO [20] of why model-based methods seem more
successful in offline reinforcement learning. Model-based offline reinforcement learning algorithms such
as MOPO [20] use an uncertainty-aware dynamics model learned from the transition information in the
offline dataset to optimise a policy using any standard reinforcement learning algorithm by learning from
model rollouts, benefiting from the same mechanisms that control D(π, πβ) as online algorithms.

27

3.5 Quantifying policy-buffer state action visitation divergence

We attempt to quantify the degree of divergence between the policy π and the data collecting process
πβ , D(π, πβ) in order to begin precisely thinking about the problem of quantifying sampling mismatch
and to motivate solutions to this problem.

It is first worth analysing what it means for the data sampled from the static buffer to be distribu-
tionally different from the on-policy distribution. Alongside the lack of consensus in the reinforcement
learning community as how to quantify off-policyness, we identify the following challenges.

• Our policy is represented by a complex neural network and our static dataset is collected using an
unknown process, so we do not have access to concise, parametric descriptions of our data buffer
distribution πβ . We therefore would like a non-parametric, sample based statistic so we can avoid
the shortcomings of trying to model πβ .

• The Markovian nature of samples from the on-policy distribution π and possibly from the dataset
distribution πβ can be challenging since this violates independence assumptions at the heart of
many non-parametric probability density comparison techniques.

• Transitions in the data buffer may be generated in a completely unknown way, meaning we can
make very few assumptions if any on the nature of πβ if we want a general statistic.

We note that we can compare the distributions induced by the data buffer πβ and the policy π by
comparing samples from states and actions they visit in the real world, rather than trying to compare an
underlying parametric form. Unfortunately there is no consensus on how to do this and so we attempt
to develop our own approximate statistic.

3.5.1 Defining a sample-based statistic

Maximum Mean Discrepancy is a non-parametric, kernel-based two sample test [29]. The authors of this
test showed that provided access to independent and identically distributed samples X,X ′, X1, .., XN

from probability distribution p and Y, Y ′, Y1, .., YM from probability distribution q, we can quantify a
measure of statistical distance as follows:

MMD2[H, p, q] = E[k(X,X ′)− 2k(X,Y) + k(Y, Y ′)] (3.2)

The statistic is based on the idea of representing the distance between distributions by using the
distances between mean embeddings of features.

Using this, the authors also proposed a kernel-based, two sample test to see if distributions p and q
are different. This has the advantage that it is sample-based, which is a desirable quality for the statistic
we are looking for since do not have a concise, parametric description of the replay buffer.

ˆMMD
2
[H, p, q] = 1

N2

N∑
i=1

N∑
j=1

k(xi, xj) +
1

M2

M∑
i=1

M∑
j=1

k(yi, yj)−
2

MN

N∑
i=1

M∑
j=1

k(xi, yj) (3.3)

We propose adapting this to our problem in order to quantify off-policyness (and to later develop an
objective function to optimise priorities attached to each transition in the static data buffer). Acknowl-
edging that we are violating the independence assumption in the two-sample MMD test to do so, we
propose an weighted MMD metric for quantifying how distributionally different transitions in the buffer
are to those in policy rollouts.

MMD2
weighted[π, πβ] = EX∼pπX′∼pπY∼pY ′∼p[k(X,X ′)− 2k(X,Y) + k(Y, Y ′)] (3.4)

28

We denote transitions from the policy rollouts as {xi}Ni=1 and transitions from the data buffer as
{yi}Mi=1. Note that each transition is encoded as a row vector containing all the non-reward information
required to distinguish a transition (the state, the action and the next state is sufficient). Concatenating
these row vectors together, we arrive at X to represent the stacked rollout transitions and Y to represent
the stacked buffer transitions. We have illustrated this explicitly in (3.5) .

X =

x1

x2

...
xN

 =

[
s1a1s

′
1

][
s2a2s

′
2

]
...[

sNaNs′N
]
 Y =

y1
y2
...

yM

 =

[
s1a1s

′
1

][
s2a2s

′
2

]
...[

sMaMs′M
]
 (3.5)

We also specify the buffer priorities as p ∈ RM , which ultimately controls the likelihood each transition
is sampled from the offline dataset. Formally, p explicitly models the event probabilities when modelling
πβ using a categorical distribution with support that is the transitions in the offline buffer. The probability
of sampling transition ym in the offline buffer has priority p(m), the mth component of p.

We denote pπ as the probability vector describing the probability of reaching each subsequent rollout
transition using policy π, defined analogously to Equation (3.6). The nth element p

(n)
π is the probability

of reaching the nth transition in the rollout. Note that if transition xt+k comes after xt in a rollout, then
necessarily p

(t)
π ≥ p

(t+k)
π .

This follows from the fact that we can compute the probability of reaching a state and action in a
transition by computing all the conditional probabilities required to reach it. Given a policy π, environ-
mental transition dynamics T , and the probability of the initial state s0 being vπ(s0), we can define the
probability of observing the following finite trace of state-actions {s0, a0, s1, a1, ..., sN−1, aN−1, sN} as:

pπ({s0, a0, s1, a1, ..., sN−1, aN−1, sN}) = vπ(s0)π(a0|s0)pT (s1|s0, a0) . . . π(aN−1|sN−1)pT (sN |sN−1, aN−1)

= vπ(s0)[

N∏
n=0

π(an|sn)pT (st+1|st, st)],

(3.6)

The empirical form of our divergence measure is as follows:

ˆMMD
2

weighted[π, πβ] =

N∑
i=1

N∑
j=1

p(i)π p(j)π k(xi, xj)+

M∑
i=1

M∑
j=1

p(i)p(j)k(yi, yj)−
N∑
i=1

M∑
j=1

2p(i)π p(j)k(xi, yj) (3.7)

We can vectorise this into the following form.

MMD2
weighted[π, πβ] = L(p) = pTK(Y, Y)p+ pTπK(X,X)pπ − 2pTπK(X,Y)p (3.8)

where K(A,B) is a matrix containing all the pairwise kernel distances between elements in A =
{an}Nn=1 and B = {bm}Mm=1 such that K(A,B)ij = k(ai, bj).

One thing to immediately notice in Equation (3.8) is that this statistic is quadratic in terms of the
buffer priorities p, with Hessian 2K(Y, Y). With a standard kernel choice such as a Radial Basis Function
(RBF) kernel, K(Y, Y) is well known to be positive semi-definite. It immediately follows that L(p) in
Equation (3.8) is convex in p and has a unique global minimum point. This hints at the amenability of
this statistic to be used for gradient based optimisation of our buffer priorities, which is something we
explore in greater detail later in Chapter 4.

29

Building intuition

For now, we can use the presence of a global minimum to build intuition and sanity check our statistic.
We attempt to find the global optimum p∗ that minimises this metric directly and explore if the optimal
form form minimising this measure of divergence makes intuitive sense. We find this by solving for p
when ∇pL(p) = 0. Note that in practice if using this statistic as an objective function to minimise with
respect to p, we would have to adapt this into a constrained optimisation problem since p must describe
a categorical probability distribution. We can ignore this for our intuition building exercise.

∇pL(p) = 2K(Y, Y)p− 2K(X,Y)T pπ (3.9)

∇pL(p) = 2K(Y, Y)p∗ − 2K(X,Y)T pπ = 0

=⇒ p∗ = K(Y, Y)−1K(X,Y)T pπ
(3.10)

The solution K(Y, Y)−1K(X,Y)T pπ can be intuitively interpreted, giving us confidence in the statis-
tic. We gain intuition for what this means by building up the solution term by term.

1. K(X,Y) computes the kernel similarity between transitions in the dataset {yi}Mi=1 and those from
the policy rollout {xi}Ni=1. In effect, this quantifies the pairwise similarity between each data point
in the offline buffer and in the rollout, and different choices of kernel should yield slightly different
levels of leniency towards differences in transitions.

As a concrete example, using a dot product kernel we have k(xi, yj) = xi ·yj = |xi||yj | cos θ, where θ
is the angle between xi and yj , the ith rollout transition and the jth transition in the replay buffer.
Using this kernel we encode transitions to be similar if their vectorised representations point in a
similar direction.

2. Next, K(X,Y)T pπ has dimensionality RM and it quantifies the expected total kernel similarity
between the rollout using policy π, for each data point y ∈ Y in the offline buffer, weighted by
the probability of reaching each transition in the rollout. The ith component [K(X,Y)T pπ]

(i) =∑N
n=1 k(xn, yi)p

(n)
π = Ex∼π[k(x, yi)].

3. Finally, multiplying by K(Y, Y)−1 to obtain K(Y, Y)−1K(X,Y)T pπ helps us to regularise against
regions where we have a high density of offline data. Simply using K(X,Y)T pπ can be problematic
if we have duplicate or similar transitions in our offline buffer, since we would effectively be indepen-
dently assigning the same priority to these transitions. The total probability mass at a duplicate
transition would therefore be more than it should be to distributionally match the state-action
visitation of π. The term K(Y, Y)−1 regularises against this.

Interestingly, K(Y, Y) is an identity matrix in the situation where all of our transitions in the replay
buffer are dissimilar to each other according to the kernel in use, and in this situation the priority
for a sample in the offline buffer is exactly its expected similarity to all the transitions in the rollout.

This analysis of the p∗ that minimises our metric makes intuitive sense since we can summarise it as
being the priority assignment that encourages the sampling process of distinct transitions in the buffer
to be similar to the distribution of transitions in the rollout.

3.5.2 Experiment

We plot the weighted maximum mean discrepancy of the transitions that are in the replay buffer and the
state-action visitation of the argmax policy π(s) = argmaxa∈A Q(s, a) at each iteration. We do this for
both the online and naive offline DQN agents in our GridWorld environments.

We see that the online agent generally exhibits less discrepancy between the on-policy state-action
visitation than the offline agent, and this discrepancy declines slightly as training proceeds due to the use

30

Figure 3.11: MMD2
weighted between the argmax policy rollout and the contents of the data buffer

of a decaying ϵ for our epsilon-greedy exploration and data collection policy. This is in line with what
we observed in Figure 3.4, giving us some experimental confidence in our new statistic.

We will make use of this statistic to quantify off-policyness and to motivate optimisation-based solu-
tions to the sample distribution problem.

31

Chapter 4

Model Aligned Offline Reinforcement
Learning (MAORL) (Known
Unknowns)

In the previous chapter we analysed and experimentally isolated the problem of misalignment between
the on-policy state-action distribution π and the offline buffer sampling strategy πβ . We observed that
using uniform random sampling, as is the norm in state-of-the-art offline reinforcement learning methods,
can be problematic. In this chapter, we present buffer alignment mechanisms to reduce this misalignment
and in doing so, propose a novel offline reinforcement learning algorithm that corrects for this problem.

As part of this effort, we introduce a new general framework for reward-penalty offline reinforcement
learning called Model Aligned Offline Reinforcement Learning (MAORL).

4.1 General Framework

We would like to minimise the divergence between the state-action visitation of the policy and the data
we sample from the offline buffer. As discussed earlier when defining our state-action visitation divergence
metric Equation (3.8), we can (and often must) resort to using samples from policy rollouts and from
the offline buffer to assess how large this divergence is if we want to avoid constructing parametric
models. While collecting samples from the replay buffer is easy to do, in offline reinforcement learning,
by definition we do not have access to the true MDP required to collect model rollout samples.

In order to obtain sample rollouts of the agent, we propose first learning a uncertainty penalised,
reward-free MDP M̃. We can perform rollouts on this approximate MDP instead. M̃ is completely
parameterised by a learned dynamics model (T), out-of-distribution (OOD) detector (U), and reward
penalty (k). This is very similar to the pessimistic MDP (P-MDP) proposed in model-based offline
reinforcement learning algorithm MOReL [21] and uncertainty penalised MDPs in MOPO [20].

We briefly consider each component:

• Learned dynamics model (T : S × A → S): this maps states and actions to the next state,
and can be learned through supervised learning on (s, a, s′) tuples in the offline dataset D =
{(sm, am, rm, s′m)}Mm=1. We use this to conduct rollouts using our policy in order to understand its
state-action visitation distribution in order to better align the sampling regime.

• Out-of-distribution detector (U : S × A → {TRUE,FALSE}): this determines whether a
state-action tuple lies outside the support of the training data. In practice, this is not distinct from
our dynamics model since we can use epistemic uncertainty estimation techniques to determine if

32

the dynamics model is uncertain of its prediction (Figure 5.5). In M̃, taking an action such that
U(s, a) is TRUE leads the agent to a terminal HALT state.

• Reward penalty (k ∈ R): when an agent attempts to transition into an OOD region during
a rollout, a negative reward is applied to this transition and the transition is incorporated into
the sampling process πβ for learning. This is the only time we might learn from a transition not
explictly present in the offline dataset under the MAORL framework, and this discourages the agent
from learning policies and exploring outside the support of the training data by associating it with
negative outcomes, preventing action distributional shift.

We will explore the specifics of learning an uncertainty-penalised MDP later in Chapter 5 so that we
can initially isolate the alignment task. Provided we have our uncertainty-penalised, reward-free MDP
M̃, we can conduct rollouts with the current policy π. Samples from these rollouts can be used to
approximately understand the state-action visitation distribution of the policy, which we can then use
to improve our buffer sampling process πβ to better align with this distribution. Finding efficient and
intelligent buffer alignment mechanisms is the focus of this chapter.

Since the misalignment problem has not been identified before, algorithms (such as those presented
in this project) that address this by using a dynamics model in this fashion define a new class of offline
reinforcement learning algorithms distinct from previous definitions of model-based and model-free offline
reinforcement learning. We call these algorithms model aligned offline reinforcement learning algorithms
(MAORL).

We outline a general framework for MAORL algorithms in Algorithm 2.

Algorithm 2 General Framework for Model Aligned Offline Reinforcement Learning (MAORL)
Require: Dataset D = {sm, am, rm, s′m, am}Mm=1

1: Initialise policy πθ, initial sampling mechanism πβ

2: Learn reward-free, uncertainty-penalised MDP M̃ = {T,U, k} where T is a learned transition dy-
namics model, U is an OOD detector, and k is a reward penalty (Chapter 5)

3: for episode ∈ {1, ..,M} do
4: scur ← sinit
5: while episode not done do
6: Sample action using the current policy a ∼ π(scur)
7: if U(s, a) then
8: Incorporate transition (s, a, k,HALT) into sampling mechanism πβ

9: else
10: Execute this action in dynamics model using current policy. scur ← T (scur, a)
11: end if
12: Update πβ to increase state-action visitation alignment (Section 4.2, Section 4.3)
13: Sample minibatch of transitions (s, a, r, s′) ∼ D using current sampling mechanism πβ

14: Optimise policy πθ using any reinforcement learning algorithm
15: end while
16: end for

Distinction from model-based offline reinforcement learning

Note that unlike model-based offline reinforcement learning techniques [20] [21], we specifically do not use
transitions from the model rollouts to directly train the policy using a reinforcement learning algorithm.
We do not even learn a reward model. After learning an uncertainty aware dynamics model, model-based
techniques make no further use of the offline data. Instead, our approach solely uses the dynamics model
for reducing the sampling misalignment problem and learns from the ground truth transitions present
in the offline buffer. For this reason, we refer to this approach as model-aligned offline reinforcement
learning (MAORL) rather than model-based. We illustrate the difference in Figure 4.1.

33

Offline Buffer D

Learned MDP M̃

Agent

πout

Learn

Sample synthetic experiencesRollout

Output

Offline Buffer D

Learned MDP M̃

Agent

πout

Learn

Sample using
πβ

Update
πβ

Rollout

Output

Figure 4.1: The differences between model based offline reinforcement learning (left) and model aligned
offline reinforcement learning (right). In model based offline reinforcement learning the learned MDP M̃
is used directly for policy learning, while in model aligned offline reinforcement learning it is solely used
for aligning the sampling process πβ .

We propose two strategies to better distributionally align the data sampling distribution with the
policy state-action visitation distribution. In Section 4.2 we describe an ad-hoc method that is inspired
by the first-in-first-out queuing mechanism used in typical online reinforcement learning algorithms where
the agent is able to explore its environment. In Section 4.3 we define a method that makes use of
mathematical optimisation techniques to learn πβ directly as a categorical probability distribution by
using the weighted maximum mean discrepency metric defined earlier in Equation (4.1).

4.2 Nearest State-Action (NSA) Queue Alignment

In this approach, we take inspiration from the fixed size, first-in-first-out queue data structures used
as buffers in traditional online reinforcement learning. We argued earlier that when combined with
exploration, the fixed capacity places an inherent limit on the degree of off-policyness of the transitions
being sampled.

Each step in our learned MDP M̃ , we generate a synthetic transition using the dynamics model. We
then scan through the offline dataset to find any transitions that are close within a specified level of
tolerance in terms of states, actions, and next states, and insert these real transitions from the dataset
into a separately maintained buffer queue. The search operation is referred to as find. By only inserting
close transitions we ensure the queue consists of transitions much closer distributionally to the current
policy state-action visitation in our learned MDP M̃. We can then sample from this queue uniform
randomly. Search tolerance is a useful parameter that can be scaled depending on our confidence in the
dynamics model.

Algorithm 3 Procedure for NSA replay buffer alignment to update sampling process πβ

1: ▷ T is the synthetic transition, Q is the sample queue, D is the offline dataset
2: procedure UpdateSamplingProcessNSA(D, Q, T , ϵtolerance)
3: find transitions in D that match T within tolerance ϵtolerance
4: Insert the unique transitions into fixed capacity queue Q
5: πβ ← uniform random sampling without replacement fromQ
6: end procedure

4.2.1 Incorporating OOD transitions

As part of the MAORL framework defined in Algorithm 2, if we encounter an OOD transition, we must
include it into the sampling process with a negative reward penalty to discourage learning a policy that

34

takes the agent outside the training data support. This can be done quite naturally using NSA replay
buffer alignment since we sample from a distinct queue to the offline data buffer. We simply insert the
synthetic transition that would have required taking an OOD action, with the reward labelled as k, the
predetermined reward penalty, and the transition specified as terminal, into this distinct queue (Q in
Algorithm 3). In this way transitions that take the agent outside the support of the training data are
included into the sampling mechanism and the agent can learn to avoid these actions.

4.2.2 Relation to Online Reinforcement Learning

It is worth noting that in the limiting case where we have an uncertainty-penalised MDP with no dynamics
prediction error and perfect OOD transition detection, we can obtain identical behaviour to an online
agent with low tolerance in our find operation. With no dynamics error, then there is an exact match
for any transition experienced in the learned MDP in the replay buffer. With all else equal, since there is
no dynamics error, using NSA Queue alignment will then process transitions the same order as an online
agent.

We validate whether this is indeed true by running NSA Queue Alignment with access to the true
GridWorld-v0 environment, but without allowing the agent to explictly insert transitions experienced and
instead forcing the agent to use the find operation instead. Despite being simply being an adjustment to
the buffer sampling mechanism, we find that NSA Queue Alignment vastly outperforms our naive offline
baseline, despite having access to the exact same dataset. All learning is performed using the offline
dataset in line with the general MAORL framework. We have identical hyperparameters for all agents
tested.

Figure 4.2: Comparing the rollout returns using the true environment during training using NSA Align-
ment. Ablating NSA Alignment leads to a collapse in the returns being observed.

We observe a very similar learning return curve to the online agent. The fact that this agent does
not exhibit the previously mentioned unlearning effect even despite having access to the same data as
the naive offline agent illustrates that exactly correcting for buffer sampling misalignment plugs the gap
required to reach performance comparable with online reinforcement learning.

In Figure 4.3, we see virtually the same buffer priority and state visitation distribution as learning
progresses, demonstrating the effectiveness of the alignment mechanism in a visual fashion.

This validates our earlier analysis that the buffer sampling distribution misalignment is an essential
limiting factor for offline reinforcement learning.

35

(a)

(b)

Figure 4.3: Figure 4.3a illustrates how the transitions stored in the sample experience replay buffer evolve
during training using NSA. Figure 4.3b illustrates how the state visitation of the agent changes.

4.2.3 Implementation Details

When implementing this alignment mechanism in a practical setting, we noted the following implemen-
tation details that help improve performance.

• n-step returns: in sparse reward problems, using n-step returns with n > 1 can be a very useful
strategy for speeding up training. Rather than training the action-value estimate Q(st, at) on the
basis of the single-step temporal difference error we use an n-step target with intermediate actions
generated in our case by the same policy being used for exploration. The target is

∑n−1
k=0 γ

krt+k +
γn maxa Q(st+n, a). We support this even if the static dataset consists of single-step traces by
finding close aligning transitions in the offline dataset for each of the n consecutive transitions
being used to compute the target. This can dramatically improve performance on sparse reward
problems where we only have an idea of what the final goal looks like.

• Bucketing and parallelism in find: find, if applied naively, can be a bottleneck in this approach
since we need to query our offline dataset each iteration to determine which transitions to insert
into the queue used for policy learning. Fortunately, we can apply two tricks to speed this up:

1. Due to the fact that we only need the nearest transitions under ϵtolerance, we can bin our
dataset based on the start state of the transition or another appropriate sharding mechanism
in order to speed up find. We can then localise our scans in bins of interest. Defining a total
ordering on transitions can also enable us to store these bins in sorted order so the final scan
can be done via binary search rather than a linear scan.

2. We can take advantage of the offline dataset’s immutability by maintaining a small thread
pool for dispatching localised find operations at each bin of interest in parallel. The resources
provisioned for the thread pool can be scaled depending on the scale of the learning task and
the quantity of data.

4.2.4 Drawbacks

While the NSA replay buffer alignment approach Section 4.2 illustrates how we might solve the buffer
alignment problem and improves performance over our baseline, it has a scalability bottleneck in the
find operation that requires intelligent software engineering and ad-hoc performance optimisations to
resolve. Furthermore, the hyperparameter ϵtolerance has a major influence on learning, and determining
a good value is not intuitive since a good value depends on a complex combination of the offline data
density and the accuracy of the predictive model used. We would like to move beyond this procedural
approach and aim to derive an efficient, mathematically sound method to achieve buffer alignment.

36

4.3 Gradient-based Alignment

We would like to mathematically frame the misalignment problem to try and derive a principled, efficient
solution. In this approach, each transition in the offline buffer will have an associated priority which
reflects its likelihood of being sampled, much like in a Prioritised Experience Replay Buffer [30]. We aim
to use optimisation-based techniques to efficiently learn good priority assignments to tackle the buffer
sampling misalignment problem by continuously adapting the distribution of priorities alloted to each
transition in the offline buffer. By doing this, we hope to move beyond the drawbacks facing the highly
procedural NSA replay buffer alignment mechanism.

4.3.1 Optimisation Problem

To approach this, we can make use of the sample-based weighted maximum mean discrepancy statistic we
developed in Equation (4.1) to quantify the divergence between the state-action visitation of the policy π
and the sampling process πβ . In this statistic, recall that we encode πβ ∼ Categorical(p), where p ∈ RM

encodes the event probabilities of sampling each of the M transitions in the replay buffer. Recall that we
can define the statistic in vectorised form as follows:

MMD2
weighted[π, πβ] = L(p) = pTK(Y, Y)p+ pTπK(X,X)pπ − 2pTπK(X,Y)p (4.1)

where K is a matrix containing all the pairwise kernel distances between row elements in X = {xn}Nn=1

and Y = {ym}Mm=1 such that K(X,Y)ij = k(xi, yj). Recall that xn is a vector representation of the nth
transition observed during the agent’s rollout using the dynamics model, while ym is an equivalent vector
representation of the mth transition in the offline dataset. For a reminder see Equation (3.5).

We can write this statistic as a function in terms of p which we will call L(p), yielding an objective
function framed in terms of the buffer sampling priorities. We propose minimising misalignment between
the buffer sampling regime πβ and the state-action visitation of the agent by optimising the priorities p
in order to minimise this objective. We would expect that the transitions sampled from the replay buffer
would be closer distributionally to those that would be visited by the agent for priority arrangements that
minimise L(p). This approach can be viewed as a continuous way to align the buffer sampling process
with the policy state-action visitation distribution.

It is worth noting that we cannot minimise this loss naively with respect to p in an unconstrained
fashion. In order to encode a valid categorical distribution, p must respect two constraints:

• Non-negativity : we must ensure that ∀m ∈ {1, ..,M} : p(m) ≥ 0 so we have a valid weighted random
sampling mechanism.

• Sum to a positive constant : we must ensure that
∑M

m=1 p
(m) = C for some C ≥ 1. We will typically

set C to be the current size of the buffer. We have unnormalised probabilities because for large
datasets, enforcing a sum to 1 could lead to undesirable floating point imprecision when representing
very small priorities.

Our optimisation problem can therefore be defined as follows.

min
p

L(p) = pTK(Y, Y)p+ pTπK(X,X)pπ − 2pTπK(X,Y)p

s.t. ∀m ∈ {1, ..,M} : p(m) ≥ 0

1T p = C

(4.2)

37

Convexity

One thing to immediately notice in that the objective L(p) is quadratic in terms of the buffer priorities
p and has Hessian 2K(Y, Y). We also note that with an appropriate choice of kernel such as using
a Radial Basis Function (RBF) kernel, K(Y, Y) is well known to be positive semi-definite. Being a
quadratic in terms of p and because K(Y, Y) is positive semi-definite, it immediately follows that L(p) in
Equation (4.1) is convex in p and has a unique global minimum point. This convexity provides us with
a strong motivation to consider gradient-based optimisation approaches to find a priority assignment
p that minimises L(p). We note that the feasible set of solutions define a simplex ∆ ⊂ RM , where
∆ = {p ∈ RM |∀m : p(m) ≥ 0 ∧ 1T p = C}. This means that the constraints define a convex set
and the overall optimisation problem defined in Equation (4.2) is a convex optimisation problem. This
suggests that we can derive a priority assignment p that both minimises the divergence with the state-
action visitation of the agent while also being feasible as sampling priorities by using convex optimisation
techniques.

We outline the general procedure for aligning our sampling process πβ in Algorithm 4.

Algorithm 4 Procedure for updating sampling process πβ using gradient-based alignment

1: ▷ T is a queue of the N previously visited transitions in the learned MDP M̃
2: ▷ D is the offline dataset
3: procedure updatesamplingdistribution(D, p, T)
4: Construct pπ using T
5: Solve constrained convex optimisation task set out in Equation (4.2) to find p∗ ∈ RM

6: πβ ← sample transitions from the offline buffer D = {ym}Mm=1 under Categorical(p∗, {ym}Mm=1)
7: end procedure

4.3.2 Projected Gradient descent to obtain feasible buffer priority alignment

A direct solution to even the unconstrained priority assignment problem has extremely high computational
complexity, as discussed later in Equation (4.6). Instead, we derive an iterative, gradient-based update
rule to find a good priority assignment more efficiently. Due to the convexity of the objective and of our
constraint set, we can be satisfied that any local optima found are actually global optima, making our
problem especially amenable to gradient-based approaches.

A naive gradient-descent update rule is not guaranteed to produce feasible intermediate values of p
under the categorical distribution constraints set out earlier. We instead perform a projected gradient
descent, where each iterative step we perform a projection step to bring the updated p̄ onto the simplex
∆, where ∆ = {p ∈ RM |∀m : p(m) ≥ 0 ∧ 1T p = C} in order to ensure the final iterate encodes a valid
sampling process that can be applied to our problem.

Recall that ∇pL(p) has the following form:

∇pL(p) = 2K(Y, Y)p− 2K(X,Y)T pπ (4.3)

We can now write down the following gradient update rule for updating pt to pt+1:

p̄ = pt + α[K(X,Y)T pπ −K(Y, Y)pt]

pt+1 = proj∆(p̄)
(4.4)

This update has a very intuitive interpretation on closer investigation, making it very appealing.

• +αK(X,Y)T pπ is a term that encourages priorities for those transitions in the data buffer (in Y)
to be similar in terms of the chosen kernel k to the recent transitions visited by the policy encoded

38

in X. This is because K(X,Y)ij will be larger when X(i) and Y (j) are similar. This has very
intuitive appeal and directly relates to ideas in the previous queue-based approach Algorithm 3 for
promoting alignment. It does this weighted by the state-action visitation distribution under the
policy which ensures the sampling priorities reflect the conditional dependencies in the traces they
are modelling (since transitions are not independent).

• −αK(Y, Y)pt is a term that regularises against changing priorities too aggressively in dense data
regions, weighted by the previous priority for these transitions. K(Y, Y) is strongest for highly
similar transitions and this term down weighs the priority change afforded based on the density
of transitions, weighted by the kernel similarity (which is also the same kernel used to promote
priorities in the other term). In effect, this term prevents "double counting" transitions.

Projection Choice

Projecting our intermediate vector p̄ ∈ RM onto a simplex is a well-studied task in convex optimisation,
with numerous proposed algorithms. Formally, the task of finding the Euclidean projection of vector p̄
onto our simplex ∆ can be specified as follows:

min
p

1

2
||p− p̄||2 s.t. ∀m ∈ {1, ..,M} : p(m) ≥ 0 1T p = C (4.5)

We use a fast, heap-based algorithm as originally proposed in [31] and further discussed in [27] to find
this projection.

This projection operation has computational complexity O(M +K logM), where M is the size of the
offline dataset and K is the number of non-zero elements in the solution. While M is certainly fixed, the
size of K is contingent on two things:

1. The degree to which the agent explores the state-action space during training. If an agent explores
more narrowly, it will encounter synthetic transitions that are close to fewer distinct transitions
in the offline dataset. As a consequence, an aligned buffer sampling mechanism will yield fewer
distinct transitions from the offline dataset, implying we have fewer non-zero elements in our solution
priorities.

2. The number of synthetic transitions we are fitting our buffer sampling mechanism to. With fewer
transitions, it is likely we will assign non-zero priorities to fewer distinct transitions in the buffer.

We find that K is very maintainable in practice since we align our buffer priorities with a fixed capacity
queue of synthetic transitions which leads to limited non-zero transitions.

4.3.3 Incorporating OOD transitions

As part of the MAORL framework (Algorithm 2), if we encounter an OOD transition we must include
it into the sampling process with a negative reward penalty to discourage learning a policy that takes
the agent outside the training data support. Initially, this may seem impossible to achieve since we
encode our sampling process as a categorical distribution over our offline samples, with unnormalised
event probabilities represented by a fixed size vector p ∈ RM . We provide a solution in Algorithm 5.

Note that p(M+1) encodes the probability of sampling the new OOD transition after insertion. We
expect a future optimisation sweep will increase the priority associated with this new transition when
necessary, bringing it into the learning process.

39

Algorithm 5 Procedure for incorporating a new OOD transition (s, a, s′) into the gradient-based align-
ment mechanism
Require: Offline dataset D = {sm, am, rm, s′m}Mm=1 = {ym}Mm=1

1: procedure IncorporateTransition(x = (s, a, s′))
2: if max{k(x, ym|ym) ∈ DOOD} < 1− γ (see Section 4.3.3) then
3: Insert new transition (s, a, k, s′) with reward penalty k into data store
4: Augment priority vector p ∈ RM with a new zeroed entry, such that p ∈ RM+1 and p(M+1) = 0
5: end if
6: end procedure

Optimisation

After experimentation, we realised that quite often the agent would reach a very similar OOD transition
already present in our sampling process from an earlier rollout. We noticed that instead of inserting
essentially duplicate transitions into our replay buffer, we could omit all insertions after the first. This
is because the next optimisation sweep will promote the sampling priority associated with the similar
transition already present in the dataset since that will bring the buffer sampling regime into closer
alignment with the state-action visitation of the agent.

We can compute a check by computing the kernel similarity of the proposed transition with the existing
OOD transitions in the data store. We use the same kernel as is used in the optimisation procedure.
Noting that the kernel outputs values in range (0, 1], if any of these is close to 1, this implies a similar
transition already exists in the data buffer and will be promoted in the next optimisation step. We
therefore forgo the insertion operation. This explains the if statement on Line 2 of Algorithm 5.

We find that in practice, this optimisation prevents the majority of OOD transition insertions.

4.3.4 Recovering hard alignment in a limiting case

Unconstrained optimum

The fact that L(p) is quadratic and has positive semi-definite Hessian 2K(Y, Y) means that a local
optimum p∗ that minimises L will also be a global minimum point. This means we can derive the
optimal priority arrangement for the unconstrained problem (without requiring p to encode a categorical
distribution) directly by solving for p when ∇pL(p) = 0.

Recall from Equation (3.10) that the closed form optimum priority assignment takes the following
form:

p∗ = K(Y, Y)−1K(X,Y)T pπ (4.6)

Computing the optimum priority arrangement p∗ in this way has very high computational complex-
ity. Noting that Y consists of all M transitions in the data buffer, K(Y, Y) ∈ RM×M , which implies
the inversion operation K(Y, Y)−1 will have computational complexity O(M3). This has unacceptable
performance implications when dealing with larger and larger datasets and is a scalability bottleneck.
Furthermore, naively computing inverses can be numerically unstable, providing additional reasons to stay
away from a direct solution. O(MN) cost can be attributed to the matrix multiplication K(X,Y)T pπ, as-
suming a naive matrix multiplication algorithm is used. The final matrix multiplication has cost O(M2).
The overall computational complexity of the direct method is therefore O(M3+MN), with the inversion
operation dominating since M ≫ N typically when working with large datasets.

Relation to online reinforcement learning experience replay sampling in a limiting case

Even though it is computationally not an option to directly compute K(Y, Y)−1K(X,Y)T pπ, it is still
valuable to briefly explore what it means in a limiting case where it can be computed efficiently. If we

40

have access to a perfect dynamics model and use a kernel kδ where kδ(x, y) = 1 if x = y, but 0 otherwise,
then the matrix holding the pairwise kernel relationships of the transitions in the data buffer K(Y, Y) is
an identity matrix (assuming we have unique data points). In this situation, the closed form optimum
has form K(X,Y)T pπ.

In a traditional experience replay buffer with fixed capacity N , all transitions have an equal chance of
being sampled. To replicate this we set pπ ∈ RN to be 1. This means the optimal priority at any given
point reduces to:

p∗
(m)

=

N∑
n=1

kδ(xn, ym) = frequency ym is present in X (4.7)

As a result, the priority assigned to any data point y(m) in the replay buffer is the frequency it has
occurred in the last N steps of the agent’s rollouts. This is exactly the same as in an online set up
when we sample uniform randomly from an experience replay buffer containing the last N transitions
experienced by the agent in its exploration rollouts. What this result illustrates that in the limiting case
where we have access to perfect model dynamics and use an equality kernel, then we recover identical
sampling behaviour to an online agent.

We note that p∗ is feasible under the constraints set out earlier Equation (4.2) (non-negativity and
summation to C) because K(Y, Y) is an identity matrix in this analysis:

• K(X,Y) and pπ only include non-negative entries, meaning p∗ is non-negative since p∗ = K(X,Y)T pπ.
If our dataset has coverage of the start points for rollouts then necessarily K(X,Y) contains at least
one positive entry.

• We can project non-negative p∗ to to ensure summation to C by rescaling our priorities without
any change to our sampling distribution:

p(i) = C
p∗

(i)∑M
m=1 p

∗(m)

4.3.5 Convergence, Learning Rate and Kernel Choice

In order to discuss convergence characteristics of our gradient-based optimisation procedure, we will
briefly omit the projection operation from our analysis in this subsection. We find experimentally that
the size of this projection is usually quite small, meaning that we can gain some insight into convergence
characteristics of the overall optimisation procedure just looking at the unprojected update.

We can see that the unprojected update rule is in fact a non-homogeneous first order matrix difference
equation of form xt+1 = Axt + b. We can rearrange terms to obtain the following:

pt+1 = (I − αK(Y, Y))︸ ︷︷ ︸
A

pt + αK(X,Y)T pπ︸ ︷︷ ︸
b

(4.8)

The steady state point occurs when pt+1 = pt = psteady as t → ∞. We can validate that the steady
point reached by iterating this relation to convergence is in fact the optimum point p∗ from earlier. Using
the fact that pt+1 = pt ∧ pt = psteady =⇒ psteady = (I −A)−1b:

psteady = (I − I + αK(Y, Y))−1αK(X,Y)T pπ

= α−1K(Y, Y)−1αK(X,Y)T pπ

= K(Y, Y)−1K(X,Y)T pπ

= p∗

(4.9)

41

We can establish that stability of this first-order matrix difference equation (i.e. that pt converges
asymptotically to p∗, the steady state optimum). We use p∗ to rewrite the equation in homogeneous
form.

pt − p∗ = A(pt−1 − p∗) = (I − αK(Y, Y))(pt−1 − p∗) (4.10)

Unfolding the relation, we get the following equation for pt − p∗:

pt − p∗ = At(p0 − p∗) = (I − αK(Y, Y))t(p0 − p∗) (4.11)

From this we can see that in order to have pt converge to p∗ as t→∞, we need (I −αK(Y, Y))t → 0
as t→∞. Given I−αK(Y, Y) is diagonalisable by construction using a symmetric kernel, we can rewrite
the above using its eigendecomposition A = Pdiag(λ(1)

A , . . . , λ
(M)
A)PT :

pt − p∗ = At(p0 − p∗) = Pdiag(λ(1)t

A , . . . , λ
(M)t

A)PT (p0 − p∗) (4.12)

To ensure stable convergence we therefore this we must ensure that all of the eigenvalues of I −
αK(Y, Y) have absolute value less than 1 so that when repeatedly multiplied, they decay towards 0; we
can use this restriction to guide our choice of learning rate α. Noting that A = I−αK(Y, Y), by linearity
we have the fact that the eigenvalues of A λA are related to the eigenvalues of K(Y, Y), λK(Y,Y), as
follows:

λA = 1− αλK(Y,Y) (4.13)

To guarantee asymptotic convergence we require every eigenvalue of I − αK(Y, Y) to have absolute
value less than 1. Taking an arbitrary eigenvalue of A, λA:

|λA| < 1

⇐⇒ |1− αλK(Y,Y)| < 1

⇐⇒ 1− αλK(Y,Y) < 1 & 1− αλK(Y,Y) > −1

⇐⇒ 0 < αλK(Y,Y) &
2

λK(Y,Y)
> α

⇐⇒ 0 < α <
2

λK(Y,Y)
(λK(Y,Y) > 0 by positive definiteness of K(Y, Y))

(4.14)

Given this constraint on fixed learning rate α actually applies for all eigenvalues of K(Y, Y), we can
safely write the following bound to guarantee stable convergence with a fixed learning rate:

0 < α <
2

λmax
K(Y,Y)

(4.15)

This gives us bounds on what fixed learning rate α we can set in order to guarantee convergence,
and illustrates how our choice of kernel and the structure of the data being used can influence learning
which can be useful for practitioners. The intuition gained here suggests that our choice of learning rate
depends on the conditioning of K(Y, Y), which in practical terms can be influenced by the spread of the
data and the choice of kernel. A useful practical preprocessing step for speeding up learning might be to
deduplicate entries in our offline buffer. In our practical implementation, we use Adam [32] instead of a
fixed learning rate but use the intuition gained here to guide our choice of kernel and learning rate.

42

Iteration starting point (p0)

We can build some quick intuition on what good starting points p0 are. This is especially valuable
since we will need to do this iterative update every time we want to realign priorities and so tricks
for accelerating learning are valuable. Analysing the closed-form optimal priority for the unconstrained
problem p∗ = K(Y, Y)−1K(X,Y)T pπ, we notice a couple of things: K(Y, Y) is unchanged between
priority update runs unless an OOD transition has been encountered and our approximation to pπ is
unchanged too. The change in optimal priority can be quantified as follows in this situation:

δp∗ = p∗2 − p∗1 = K(Y, Y)−1[K(X2, Y)−K(X1, Y)]T pπ (4.16)

Note that X1 and X2 encode the synthetic transitions seen in subsequent steps of a rollout in batch
form. As a consequence, many rows of X2 are the same as X1, only shifted down a few rows. With X2

typically being not vastly dissimilar from X1, our intuition tells us that the new optimum point will be
in the vicinity of the old one, meaning δp∗ is not particularly large. Therefore we set the initial priority
assignment p0 to be the optimum point found in the previous alignment optimisation. While the analysis
of this is admittedly imprecise, we observe that this works well experimentally as illustrated in Figure 6.8.

4.3.6 Amortising the cost of maintaining kernel matrices

Naively computing the kernel matrices each time we need to align our buffer sampling mechanism can
quickly become expensive due to their size. We include the following optimisations in our practical
implementation to amortise the cost across multiple priority optimisations:

• Caching K(Y, Y): we observe that the offline dataset is only augmented when a dissimilar OOD
transition is encountered, meaning Y rarely changes. We can lazily only recompute K(Y, Y) when
this occurs rather than constructing it from scratch every time we want to align buffer priorities.

• Piecewise computation of K(X,Y): computing K(X,Y) from scratch each transition has a compu-
tational cost on order of O(MN) where M is the number of transitions in the offline dataset and N
is the number of transitions in the rollout, since we need to compute k(x, y) ∀(x, y) ∈ X × Y . We
can instead compute each row of K(X,Y) piecewise as each new rollout transition x arrives, and
stitch these together to recover the overall matrix K(X,Y). Computing K(x, Y) for a singular tran-
sition x has cost O(M). Stitching together N rows K(x, Y) in place (without additional memory
allocation) has computational cost O(N). This means that each step, computing K(X,Y) incurs a
cost of O(M+N) rather than O(MN) as it would by naively computing K(X,Y) from scratch each
update. Carefully prealloating memory for this matrix can yield significant speed improvements.

4.3.7 Further Implementation Details

• In sparse reward problems, we can ensure scarce but important high reward transitions are over-
sampled by encoding our vector pπ to increase the priority assigned to high reward transitions. We
can do this by setting p

(i)
π to be larger if the ith transition x(i) has a high reward. This encour-

ages higher priorities to be assigned to similar transitions in the offline buffer. Selectively boosting
priorities has been previously explored in the context of prioritised experience replay buffers [30].

• Initially having a higher learning rate when the number of transitions seen in rollouts is small can
be useful for expediting training. We find a linearly decaying learning rate schedule, when combined
with Adam, works well across all tasks assessed:

learning rate (α) = max{0.001, 0.1(1− N

C
)}

where N is the number of transitions collected from synthetic rollouts and C is the target for the
sum of the priorities.

43

Chapter 5

Learning and Using Uncertainty
Penalised Markov Decision Processes
(Unknown Unknowns)

Previously in our construction of the MAORL framework Section 4.1, we mention the construction of a
reward-free, uncertainty-penalised MDP that penalises out-of-distribution transitions. In this chapter,
we will define what this is based on work done in [20] and [21] and discuss a practical approach to learning
this. We will propose the use of Spectral-normalised Gaussian Processes (SNGPs) [24] to construct an
uncertainty-aware dynamics model

5.1 Uncertainty-penalised Markov Decision Process

We first define how we will construct our uncertainty-penalised MDP and how this is integrated within
the MAORL framework as set out in Algorithm 2. Our definition is very similar to the proposal in
MOReL [21] of a pessimistic MDP (P-MDP), in that reward-penalties are applied to transitions outside
the support of the training data through an uncertainty-based unknown state-action detector. However,
it distinguishes itself from P-MDPs since we are not learning a reward model since we are only using
the predictive model to align our sampling process with the current state-action visitation of the agent
rather than to learn from synthetic transitions as in model-based offline reinforcement learning methods.

An uncertainty-penalised, reward-free MDP M̄ can be parameterised as {T,U}, where T : S×A → S
is a predictive dynamics model of the environment mapping states and actions to the next state reached.
This is something that needs to be learned in an offline reinforcement learning context since we do not
have access to the true MDP. U is an out-of-distribution state-action detector, and is needed to be able to
determine which actions take the agent outside the support of the training data so they can be penalised.

U(s, a) =

{
TRUE if (s, a) is OOD
FALSE otherwise

(5.1)

We illustrate how the state-action space S ×A is partitioned by the OOD detector U in Figure 5.1.

When conducting a rollout during training using the dynamics model T , if we encounter a transition
(s, a, s′) such that U(s, a) = TRUE, we then incorporate this transition into our sampling process for the
future, augmented with a reward penalty. This reward penalty is the only instance that we will use a
reward not directly accessed from the offline dataset and is done in order to discourage the agent from
learning a policy that takes it away from the support of the training data. We also make OOD transitions
terminal due to potential degradation of the dynamics model in high uncertainty regions.

44

S ×A

Training samples

In Distribution Subspace: U(s, a) = FALSE

Out of Distribution Subspace: U(s, a) = TRUE

Figure 5.1: Representation of our uncertainty penalised learned environment

We can write down an augmented transition function Tu induced by this as follows:

Tu(s
′|s, a) =

{
δ(s′ = HALT) if U(s, a) = TRUE
T (s′|s, a) otherwise

(5.2)

A practical challenge is determining which transitions are outside the support of the training data. In
related work such as MOPO [20] and MOReL [21], the primary way this is tackled is by using ensemble
networks to estimate the epistemic uncertainty of the predictive dynamics/reward model.

5.2 Using Spectral-normalised Gaussian Processes (SNGPs) to
learn an uncertainty-penalised MDP

We argue that SNGPs can be used to represent an uncertainty-penalised MDP, M = {T,U}, on their
own:

• An SNGP is fundamentally a residual neural network, which means that it can model complex,
non-linear functions when trained using supervised learning. We have access to a static offline
dataset D = {sm, am, rm, s′m, am}Mm=1, meaning we can learn a predictive dynamics model T that
maps state-action tuples (s, a) to δ, the change in state required such that the next state s′ = s+ δ.

• A trained SNGP is able to quantify the amount of epistemic uncertainty associated with a new
prediction σ2, since the typical dense output layer is replaced with a linear approximation to a
Gaussian Process with RBF kernel. We can apply a hard threshold on the epistemic uncertainty
associated with the prediction of a state-action tuple to determine whether it is outside the support
of the training data, since the epistemic uncertainty associated with an input is related to the
distance of the input from the data trained on [24].

Given SNGP(s, a) = (δ, σ2) for an arbitrary state-action tuple (s, a) ∈ S ×A:

T (s, a) = s+ δ

U(s, a) =

{
TRUE if σ2 > ϵ

FALSE otherwise
(5.3)

We must select ϵ as a uncertainty threshold beforehand.

45

In MOReL, uncertainty quantification in the P-MDP is done using boostrap ensembles. In this setup
learn multiple dynamics models {fθ1 , fθ2 , . . . } with different weight initialisations, and a state-action
tuple is determined OOD if maxi,j ||fθi − fθj ||2 > some threshold. While this is a reasonable technique,
we attempt to introduce SNGPs to perform a similar task for two reasons:

1. SNGPs have lower memory footprint and lower computation costs associated with both inference
and training. This is because ensemble-based approaches require the training of multiple models
and inference requires multiple forward passes. While these considerations appear very practically
minded, it is worth bearing these things in mind to make the application of offline reinforcement
learning methods useful in practice especially for deployment in real-time applications.

2. SNGPs have more conceptual grounding in how the epistemic uncertainty is calculated, with deriva-
tion based on replacing the final dense layer of a neural network with an approximation to a Gaussian
Process with a Radial Basis Function kernel and introducing operations that preserve a notion of
distance in the latent space of the neural network that is bounded with respect to distance in the
input (state-action) space. This theoretical grounding gives us very good insight into both the
strengths and limitations of using SNGPs to construct our predictive model.

5.2.1 Developing and open sourcing a PyTorch SNGP library

Our first practical task was to develop a reference PyTorch SNGP library, something that was distinctly
lacking reflecting the novelty of the approach. Our implementation0 has been open-sourced in order to
enable greater activity using SNGPs for Machine Learning practitioners that use PyTorch.

We provide model implementations, trainers and utilities with minimal dependencies to enable easy
integration into new projects. Our trainers abstract away the details of managing the SNGP precision
matrix in the training process and provide checkpointing alongside save/load features.

Accommodating regression tasks

The SNGP was developed as a method to estimate predictive uncertainty for deep classifiers [24]. As such,
both the original paper and the official Tensorflow1 implementation only make provisions for classification
tasks. We found that there was little standing in the way of enabling SNGPs to work with regression
tasks and so we include the option to do so not present in the official implementation.

We replace the use of cross-entropy loss to minimise the negative log likelihood − log p(D|β) with mean
square error when computing a maximum a posteriori estimate of output layer weights β given training
data D, which is required during SNGP training. This adjustment enables us to learn uncertainty-aware
environment dynamics, which is fundamentally a regression problem. While being an admittedly small
addition, as far as we are aware our library is the first to support this out of the box and we have been
able to verify that SNGPs perform expectedly well on regression tasks.

Results using synthetic data

We verify our implementation using synthetic data. All of these results are available publically2.

We first attempt to classify the synthetic Two Moons scikit-learn dataset3. As can be seen in Fig-
ure 5.2, we can correctly classify the two classes while recovering good epistemic uncertainty predictions
by having high uncertainty away from the training data support.

0https://github.com/adityagoel4512/Spectral-normalized-Neural-Gaussian-Process-PyTorch
1https://github.com/google/uncertainty-baselines/blob/c4b52ea74cd83a1d99d775ed4ff597852c3c41c4/

baselines/cifar/sngp.py
2https://github.com/adityagoel4512/Spectral-normalized-Neural-Gaussian-Process-PyTorch/sngp.ipynb
3https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

46

https://github.com/adityagoel4512/Spectral-normalized-Neural-Gaussian-Process-PyTorch
https://github.com/google/uncertainty-baselines/blob/c4b52ea74cd83a1d99d775ed4ff597852c3c41c4/baselines/cifar/sngp.py
https://github.com/google/uncertainty-baselines/blob/c4b52ea74cd83a1d99d775ed4ff597852c3c41c4/baselines/cifar/sngp.py
https://github.com/adityagoel4512/Spectral-normalized-Neural-Gaussian-Process-PyTorch/sngp.ipynb
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

Figure 5.2: Two Moons classification using SNGP

We then consider regression tasks. The simplest task considered was a one-dimensional input Fig-
ure 5.3 task.

Figure 5.3: One dimensional input regression task

We can see in Figure 5.3 that the model’s assessment of uncertainty grows consistently as we supply
inputs farther away from the training data support in red. This is encouraging since we want to use
uncertainty from our learned transition dynamics model in order to construct our OOD detector U .

5.2.2 Learning uncertainty-aware dynamics models

Having developed a SNGP library, we use this library to model the dynamics of each of the GridWorld
environments constructed for testing. Note that we do not include transitions that end at a Lava state in
constructing the dataset used for supervised learning. In this way, Lava states simulate our OOD regions
and the model is forced to actively discover them by associating them with high uncertainty. We can
assess this by comparing the predictive uncertainty and HALT states to the spread of Lava states in the
original environment. We note that this is an especially difficult task for ensemble approaches since there
is a sharp drop to zero in the density of training data moving into the Lava region.

We visualise the OOD HALT regions and the predictive uncertainty for both GridWorld environments
in Figure 5.4 and Figure 5.5. The HALT regions are determined by thresholding the predicted epistemic
uncertainty at appropriate values for each environment.

In Figure 5.6 we depict the predicted displacement for executing a forward moving action when in all
different possible orientations {North, South,East,West} at each state in GridWorld-v0 to depict what
the dynamics predictions look like in the learned uncertainty-penalised MDP.

47

(a) Predictive uncertainty from SNGP (b) Terminal HALT regions

Figure 5.4: GridWorld-v1: predictive uncertainty and distribution of HALT states from thresholding
predictive uncertainty σ2 at 0.4

Figure 5.5: GridWorld-v0: predictive uncertainty and distribution of HALT states from thresholding
predictive uncertainty σ2 at 0.5

(a) Orientation left,
moving forwards

(b) Orientation right,
moving forwards

(c) Orientation up,
moving forwards

(d) Orientation down,
moving forwards

Figure 5.6: GridWorld-v0: change in position (δ) according to learned uncertainty-penalised MDP

48

Chapter 6

Evaluation

In this section we evaluate our iterative, gradient-based alignment mechanism.

6.1 GridWorld Results

We constructed multiple sparse-reward GridWorld environments with varying challenges to assess the
success of our algorithm. Model architecture details required to replicate results found here can be
found in Appendix A and further detailed description of the GridWorld environments can be found in
Appendix C.

6.1.1 Methodology

Our baseline is an idealised offline DQN agent with access to all reward penalised OOD transitions in its
replay buffer. This baseline is much stronger than a completely naive application of the DQN algorithm
without exploration since the agent should not suffer from action distributional shift as every action the
agent can bootstrap from is covered in the offline dataset. The Lava regions of the GridWorlds encode
the OOD regions effectively. Transitions into Lava are terminal and receive a negative reward penalty.

We construct our OOD state-action detector using a Spectral-normalised Gaussian Process (SNGP)
trained to predict the dynamics of the environments. The training data provided here excludes transitions
that terminate at a lava state. This means our alignment approach does not have access to OOD
transitions unlike our baseline, imitating the realistic set up in practice where we don’t explictly know
what we don’t know when deploying an offline reinforcement learning algorithm using a static dataset.

6.1.2 Training Return Log

The immediate thing to notice above is how far behind our offline baseline agent is in terms of the
return it receives over the course of training. Bearing in mind that the gradient-based alignment agent
must discover OOD transitions as defined by the SNGP, this is clearly a massive improvement. We see
returns almost on par with an online agent with the same hyperparameters which has been included for
comparison, despite never exploring the true MDP.

49

(a) GridWorld-v0 (b) GridWorld-v1

Figure 6.1: Cumulative undiscounted rollout returns averaged over 7 distinct seeds

6.1.3 Final Policy Performance

In line with the approach used in the literature, we determine the final policy performance to be the
cumulative undiscounted return achieved by the argmax policy at the end of training. We take a mean
over 7 training runs.

Task Naive Offline RL Gradient Alignment Online
GridWorld-v0 -2.949 -0.428 -0.174
GridWorld-v1 0.0 0.42 0.39

We can see a clear gap between naively applying reinforcement learning without exploration (even
with terminal OOD transitions included in the static buffer) and when using our proposed gradient-
based alignment mechanism. This suggests that, just as we assessed in Chapter 3, mitigating action
distributional shift is necessary but not sufficient for addressing the performance gap with online methods.

There is a smaller gap towards our online DQN agent’s performance. The performance gap here can be
partly explained by slackness in the optimisation procedure. Using a gradient-based, iterative approach
to buffer priority assignment we will naturally not necessarily arrive at the precise optimum priority each
iteration in order to speed up training. One possible avenue for future research is to investigate new
optimisation strategies and objective functions for gradient alignment. A second explanation could be
predictive inaccuracy in the dynamics model.

6.1.4 Comparison to model-based offline reinforcement learning methods

In Figure 4.1, we depict the fundamental differences between model-based and model-aligned approaches
to offline reinforcement learning, the biggest of which is that within the MAORL framework we do not
learn a reward model and solely use the transition dynamics model to obtain samples in order to improve
alignment of the buffer sampling mechanism with the state-action visitation of the agent.

One of the core challenges with model-based methods in general is the need for errors in the predictive
reward model to be sufficiently small that they are not exploited by the learning agent. We wanted
to assess whether model-aligned approaches would suffer in a similar way, especially in a sparse-reward
regime where only the goal states are specified through positive rewards.

We construct a P-MDP as in MOReL [21] for our model-based offline agent. The MOReL framework
leaves open the choice of uncertainty-based OOD detector - in order to ensure a fair comparison with
our model-aligned agent, we use an SNGP’s predictive uncertainty for this purpose. High uncertainty
transitions have negative reward penalty and are terminating as specified by MOReL. We then run the
same DQN algorithm as our online agent using this learned P-MDP.

We find that despite having an accurate reward model and dynamics model, the agent ends up

50

(a) GridWorld-v0 (σ2 > 0.6) (b) GridWorld-v1 (σ2 > 0.4)

Figure 6.2: Predictive reward models with reward clipping when predictive uncertainty is high

exploiting local optima induced by small positive predictive errors. We also find that the model-based
offline agent displays a significantly greater variance in the location it reaches. In Figure 6.3, we illustrate
that the agent not only finds a local optimum point that is far from the goal consistently, but does so in
different ways as illustrated by the high variance in final distance over multiple training runs. Considering
both the model-aligned (MAORL) and model-based (MBORL) agents have access to identical dynamics
models in this experiment and use the same hyperparameters, it is clear that the use of learned reward
models especially in sparse reward domains can be problematic.

Figure 6.3: Distance of the final rollout position of the agent from the goal state over the course of
training for MAORL and MBORL agents (7 training runs using GridWorld-v1)

We believe that this is because in sparse reward regimes, any small errors in the predictive reward
model can be heavily exploited in the absence of a strong overriding reward signal. With the ground
truth reward being 0 for most transitions, small errors positive errors can be exploited if the agent does
quickly find the stronger positive reward signal at the goal state while exploring.

This is reflected in the fact that according to the reward model, the agent accrues a very positive
reward while in fact executing the trajectory using the true MDP yields very little (Figure 6.4a and
Figure 6.4b). In Figure 6.4c and Figure 6.4d we can see that the problem is not to do with the dynamics
model since the distance of the final rollout state to the goal according to the true MDP position to the
goal state is very similar to that predicted by the dynamics model.

51

(a) GridWorld-v0 return (b) GridWorld-v1 return

(c) GridWorld-v0 rollout distance (d) GridWorld-v1 rollout distance

Figure 6.4: Undiscounted return and mean distance from goal state at end of rollout as assessed by the
dynamics model and by the true MDP (averaged over 7 training runs)

Explaining the resilience of MAORL

The issue facing model-based methods is that they are effectively replacing clean, ground truth data with
a predictive model that is guaranteed to have small amounts of error. In sparse reward tasks where we
might only get a strong positive reward at the goal state, this is a challenge since the agent might exploit
a local optima created by small prediction error before encountering the desired goal reward signal.

In MAORL, we instead learn from the exact ground truth data and simply do not learn a reward
model. In this way, we can expect less error/noise in the reward signals used for training our agent. Using
the same dynamics model and environment, MAORL yields much better results.

Figure 6.5: Comparing MAORL using gradient-based alignment to using a P-MDP from the MOReL
approach to model-based offline reinforcement learning (GridWorld-v0).

6.1.5 Prefilling OOD transitions

In reinforcement learning with exploration, one benefit is that the agent can receive negative reinforcement
from bad transitions explored as well as positive reinforcement, since this helps refine the search space of
the policy away from poor return strategies. Similarly, in the MAORL framework, the learning agent also
needs to explore in the learned uncertainty-penalised MDP in order to discover OOD actions to avoid.

52

We investigate whether having a-priori knowledge about knowledge gaps in the dataset can be used
to improve performance or accelerate training when paired with a model-alignment mechanism. We aim
to do this by prefilling our replay buffer with OOD transitions ahead of time rather than requiring the
agent to experience them dynamically through exploration. We know from our earlier experiments with
our offline baseline that this type of reward shaping is not sufficient always to reach parity with an online
agent, and so here we will really be assessing how our buffer alignment mechanism incorporates useful
OOD transitions into the sampling process during training.

(a) GridWorld-v0 (b) GridWorld-v1

Figure 6.6: Cumulative undiscounted rollout returns averaged over 7 distinct seeds

As seen in Figure 6.6, we find that the agent generally learns faster with advance access to OOD
transitions even on our relatively confined GridWorld environments. The return is also more consistent
across runs than when OOD transitions must be discovered, leading to a higher mean return.

Practical takeaway

This informs us as practitioners that in practical settings where we may have some partial a-priori
knowledge about the data sources used to collect our diverse offline datasets, including this knowledge by
proactively populating our dataset ahead of time with examples of transitions we know are not included
with reward penalties can accelerate learning within the MAORL framework. One area to explore in future
work is how to automatically generate these OOD examples ahead of time. One practical, unsophisticated
strategy might be to sample uniform randomly across a subset of the input domain to our OOD detector
U and insert transitions where U(s, a) = TRUE. We expect adversarial learning approaches such as
GANs to be an exciting avenue for future exploration in the area of OOD example generation.

Could it improve online learning?

We note that the previous analysis about the need to explore to find negative reinforcement applies
to online algorithms as well. We investigated how using model-alignment in an offline framework with
access to the true MDP compares to an online agent in our GridWorld environments. Our model-aligned
approach effectively has the entire visitable state-action space collected into a buffer and uses gradient-
based alignment rather than online exploration to tune what gets sampled.

We find that for our GridWorld set ups, we arrive at a good strategy slightly faster than when using
online learning despite all hyperparameters being exactly the same. Especially noticeably on GridWorld-
v0, the mean return is distinctly higher across runs. This reflects the fact that the agent more consistently
reaches the goal state which contains the sparse positive reward signal while there is higher variance across
runs using the online agent. GridWorld-v0 is an especially challenging task due to the sparsity of positive
reward signals and the Lava barrier.

We hypothesise that the reason for the slightly faster convergence at a goal reaching strategy is because
gradient-based buffer alignment uses a smooth kernel (in these experiments we use an RBF kernel), it
smoothly incoporates transitions that may not have been visited as yet but which are similar to those
that have been visited into the training process. This can present small improvements in training speed

53

(a) Cumulative returns for rollouts for
GridWorld-v0

(b) Cumulative returns for rollouts for
GridWorld-v1

Figure 6.7: Cumulative undiscounted rollout returns averaged over 7 distinct seeds

in sparse reward environments since it means we might sample a distinct and useful reward signal earlier
than we otherwise might if we had to exactly visit the associated state. We leave it to future work to
investigate this in greater detail.

6.1.6 Moving initial point

One possible drawback of our proposal is the additional time required to align our buffer priorities
compared to using uniform random sampling as in our offline baseline. We perform a projected gradient
descent every time we want to sample from the offline buffer.

We assess whether the moving initial point p0 we introduced as an optimisation in Section 4.3.5
actually improves training speed by reducing the time taken to converge. We proposed that a good
initial point p0 for the iterative optimisation of buffer priorities is the optimum point found in the
previous optimisation procedure. As can be seen in Figure 6.8, after the first priority optimisation has
completed, the time taken to conduct priority optimisations significantly decreases when we start the
next optimisation procedure at the previously reached optimum rather than using a fixed initial point
(that represents a uniform distribution over the training samples).

Figure 6.8: Time taken for buffer priority optimisation when using moving initial point p0 (Section 4.3.5)
compared to constant p0 initialised to encode uniform random distribution with equal priorities at all
elements. Results taken over 5 training runs on a machine with Intel(R) Xeon(R) W-2145 CPU at
3.70GHz and NVIDIA GeForce RTX 2080 GPU on a task using GridWorld-v1.

This also emprically validates our earlier assessment that each subsequent assignment optimum point
is indeed close to its predecessor in the space of priority assignments.

54

6.1.7 Qualitatively assessing alignment

We find that qualitatively, this approach succssefully aligns buffer priorities with the state-action visitation
of the agent. We can visualise this for our 2D GridWorlds through snapshots in the training process.
One such snapshot is illustrated below:

Figure 6.9: Buffer alignment visualisation

55

Chapter 7

Conclusion

In Chapter 3, we identified the buffer sampling distributional alignment problem as a core limitation of
doing reinforcement learning without exploration. This is a novel insight and one of our ambitions for the
project is that this can help motivate algorithmic innovation in the offline reinforcement learning space
to address remaining performance gaps with online learning algorithms.

As part of our analysis we propose using an adapted Maximum Mean Discrepancy to approximately
quantify the degree of misalignment (Section 3.5) in a non-parametric, sample-based fashion. The absence
of quantitative techniques in the literature for this means that notions of off-policyness are often analysed
using didactic examples rather than statistical tools. Our proposed statistic works well experimentally
but we believe better solutions are waiting to be discovered.

in Chapter 4, we begin the effort to find better offline reinforcement learning algorithms that tackle the
misalignment problem by proposing the MAORL framework. Unlike any offline reinforcement learning
method that precedes it, MAORL algorithms tune the buffer sampling regime rather than applying
explicit constraints on the policy. This puts it in a brand new class of algorithms that consider experience
replay buffer sampling management as explictly part of the optimisation problem being solved by the
algorithm. We briefly introduce an ad-hoc buffer alignment mechanism in Section 4.2.

Using our quantitative metric defined earlier, we are able to derive a mathematically principled ap-
proach to buffer alignment that uses techniques from convex optimisation to iteratively arrive at a sam-
pling regime that is closely aligned to the agent’s visitation continuously during training (Section 4.3).

Evaluation of our proposed algorithm suggests that this approach largely mitigates the misalignment
problem, vastly outperforming our naive offline reinforcement learning baseline with access to all out-of-
distribution transitions on a GridWorld task set. Performance closes in on that of an online agent.

Finally, in Chapter 5 we provide a concrete approach towards developing uncertainty-penalised MDPs
by using Spectral-normalised Gaussian Processes (SNGP), which we argue have some better properties
than ensemble-based techniques traditionally used in existing model-based offline reinforcement learning
implementations. We want to increase awareness of other, promising uncertainty estimation techniques
coming out of the deep learning community and encourage greater experimentation. As part of this effort,
we produce a reference SNGP PyTorch library that has been open-sourced.

7.1 Conceptual relationship to the state-of-the-art

The MAORL framework distinguishes itself from any existing offline method by aiming to evolve the
buffer sampling distribution rather than control policy optimisation as is common in the literature. The
second way it is unique is in the way it uses a learned dynamics model without needing a reward model,
unlike existing model-based methods.

56

7.1.1 Buffer tuning

Existing model-free offline reinforcement learning algorithms do not usually explicitly evolve the mecha-
nism used for sampling (πβ). Model-free offline methods traditionally sample uniform randomly from the
offline dataset, and primarily make algorithmic adjustments to prevent errors from bootstrapping from
out-of-distribution actions from derailing training.

Policy constraint methods in particular aim to constrain policy improvement steps to minimise some
measure of the divergence between the current policy πk and a behavioural model of the training data
each policy improvement iteration in order to prevent the policy from improving in an unconstrained
manner that might lead it to take actions outside the support of πβ .

πβ πk

MAORL

Policy Constraint

Policy constraint methods have two key drawbacks not present in MAORL. Firstly, many of these
methods require us to model πβ [2] [14] [13] using tools such as VAEs, which can add complexity and
inaccuracy compared to using the replay buffer as is in a non-parametric fashion. Secondly, constraining
π to πβ can be too aggressive in preventing improvement over and beyond the policies used to collect
the offline data as discussed in [13]. While MAORL actually aims to align with the sampled state-action
visitation and not the exact policy π of the agent (these can be different in off-policy methods), in general
we can argue that MAORL algorithms approximately go the opposite way to policy constraint methods,
optimising the sampling process to be closer to the policy rather than vice versa.

The advantage-weighted behavioural model (ABM) [13] is a interesting proposal to alleviate some of
the issues from having an excessively conservative policy improvement constraint. The authors propose
learning a parametric model of the offline data by maximising an advantage-weighted log likelihood.
In effect, ABM filters the behavioural policy πβ on policy improvement for transitions that have high
expected advantage with respect to the current policy and have therefore potential to improve our policy,
rather than simply trying to model construct a maximum likelihood model of the data buffer. At the
time of writing, ABM is probably the nearest conceptual neighbour to MAORL in the literature however
it too requires us to construct parametric models of the experience replay buffer.

7.1.2 What the dynamics model is used for

Model-based offline reinforcement learning methods such as MOPO [20] and MOReL [21] learn both
dynamics and reward models from the offline dataset. As illustrated earlier in Figure 4.1, MAORL
methods are unique in that they do not learn a reward model nor do they explictly sample synthetic
transitions from model rollouts directly for learning, instead only using it to tune buffer sampling.

7.2 Evaluation Limitation

One of the limitations of our evaluation is the lack of experimentation on more challenging continuous
control tasks. We have no reason to believe our approach will not scale to meet the challenge and our choice
to evaluate our approach using our synthetic, discrete action GridWorld environments (Appendix C)
was quite intentional. We wanted a usable test-bench that could continuously challenge our ideas as
we iterated on how the final algorithm should look, and operating on a two dimensional GridWorld
environment allows us to develop visualisations and graphical representations of concepts that are not
possible when working with higher dimensional states. Furthermore, this environment enables us to
perform idealised experiments such as including OOD transitions explicitly into the replay buffer to
evaluate unique aspects of our proposals - this is not easy to do on more complex tasks. Nonetheless, it

57

is still essential to ultimately assess performance on continuous control problems since most real-world
tasks require continuous actions and we intend to address this in future work.

7.3 Future work and continuation plans

We intend to continue work on this project with the intention of publication.

7.3.1 Continuous control tasks and real world robotics

One omission from our project is the lack of experimental data on continuous control tasks. Developing
benchmark results on the D4RL benchmark suite [33] is an important step to take to experimentally to
validate the scalability of our proposed approach to more complex tasks. Taking this further still, future
work should include deployment of MAORL algorithms using real robots. We believe that gathering data
on how our approach works in practical applications can help drive improvements to our proposals.

7.3.2 Optimisation strategies for priority assignment

As part of our project we explored numerous optimisation strategies (Appendix B) to efficiently produce
solutions to the optimisation task set out for good priority assignment in Equation (4.2). While our
approach has proven to be highly scalable and computationally very reasonable, we believe that there is
potential for further research into new optimisation strategies that may be able to find efficiency gains
over the approach we have proposed using projected gradient descent (Equation (4.4)).

7.3.3 Quantification of off-policyness

The weighted maximum mean discrepency metric we propose in Section 3.5 has good qualities and fills a
vacuum in the literature for how to quantify off-policyness. There is an absence of quantitative techniques
in the literature that quantify how different two policies are and off-policyness is often analysed using
didactic examples rather than statistical tools. Our proposed statistic works well experimentally for our
purposes in this project but we believe better solutions are waiting to be discovered from first principles
that give more precise treatment to the Markovian structure of a rollout. We believe well-founded
quantitative techniques to evaluate this would advance the state of affairs in reinforcement learning
generally by helping us to build more precise conceptual models for how published algorithms truly work.

7.3.4 Can we do alignment in a model-free fashion?

The MAORL framework requires the use of a dynamics model and uncertainty-based out-of-distribution
detector. The former enables us to obtain sample rollout traces that we can use to align our buffer
priorities to and the latter helps us avoid action distributional shift. Finding ways to estimate the
potential state-action visitation of the agent in a manner that is not sample-oriented would help us move
past the need for a dynamics model without having to develop parametric models of our replay buffer as
is common in related methods such as ABM [13].

7.3.5 Explictly codifying the experience replay buffer

Our proposed algorithm is quite unique in that it explictly manages its experience replay buffer using
a strategy codified mathematically. This is not just quite unique in the offline reinforcement learning
community but also in the deep reinforcement learning community at large. Most algorithmic innovations

58

focus on learning representations, variance control, and other problems associated primarily with the
policy improvement problem. The experience replay buffer is generally included in a fairly ad-hoc fashion
using a fixed size queue and it is difficult to build precise conceptual models for how this vital component
of the learning process actually influences learning. One area to explore is to build on experimention in
Section 6.1.5 to drive research that aims to more tightly integrate the experience replay buffer mechanism
to the rest of the algorithm by framing the desired sampling process mathematically.

Attention mechanisms [34] have had tremendous success in supervised learning tasks such as machine
translation by enabling the learned model to focus on important features of the input. Exploring attention-
like mechanisms for self-management of the experience replay buffer sampling based objectives might be
an interesting space to explore more broadly. This fits in with the doctrine that to build truly performant
learning systems requires us to involve all parts of our algorithm in the learning process together.

59

Appendix A

Experiment Details

A.1 DQN Hyperparameters

Our offline and online Double DQN agents shared the exact same parameters for the same task where
the online hyperparameter applies, so the following applies for both online and offline experiments. We
make make minor adaptations for each assessed environment.

Table A.1: Double DQN Hyperparameters across online and offline tasks

Attribute GridWorld-v0 GridWorld-v1

Hidden Layers 1
Hidden Layer Size 32

Batch Size 32
Buffer Size 10000 8000

Training Episodes 300-400 300
Gradient Clipping True at 1
ϵ-decay schedule Linear 0.7 to 0.05 Linear 0.6 to 0.05

γ 0.98
Optimisation Adam with learning rate 0.001
Activation ReLU

Target Net Update Rate Hard update every 1000 iterations
n-step returns 2

A.2 Dynamics Model (SNGP) Hyperparameters

When learning dynamics models, we used the same model architecture for both environments. We trained
our dynamics models using our open-sourced SNGP PyTorch library.

Table A.2: SNGP Hyperparameters for uncertainty-aware dynamics learning

Attribute GridWorld-v0 GridWorld-v1

Backbone Resnet
Spectral Normalisation 0.9

Training Epochs 300
Ridge Penalty 10−6

Units in linear RFF Approximation 1024
Precision Matrix Computation End of training

Hidden Layers 1
Activation ReLU

60

Appendix B

Attempted Optimisation Strategies

We tried numerous optimisation strategies beyond what is documented in the main body of the report
to find solutions to the buffer priority assignment problem (Equation (4.2)). We list these with brief
comments to motivate future work exploring new optimisation strategies.

Solve Lagrangian via Dual Gradient Descent

We can define the Lagrangian of the original problem L, with Lagrange multipliers λ ∈ RM , β ∈ R and
γ ∈ R with λ ≥ 0, β ≥ 0 and γ ≥ 0.

L({p, λ, β, γ}) = L(p)− λT p+ β(

M∑
m=1

pm − C) + γ(C −
M∑

m=1

pm) (B.1)

We can now define the new objective as follows:

max
{λ,β,γ}

min
p
L({p, λ, β, γ}) (B.2)

We have two modes in our implementation. In one implementation, we experimented with manually
tuning the Lagrange variables to high positive values for the GridWorld environment being experimented
in. This is not recommended, as good settings are highly dependant on the specific task and environment.
In the other mode, each iteration of gradient descent with respect to p, we perform gradient ascent of the
same Lagrangian loss with respect to the Lagrange multipliers in order to ensure their non-negativity in
order to satisfy the constraints.

Achieving convergence of the dual gradient descent approach proved very difficult and the non-
negativity constraints in particular are difficult to manage. This approach is probably not scalable
for large datasets.

Interpret p as log priorities

This was a speculative approach at maintaining our buffer priorities p as log priorities instead to produce a
feasible sampling regime. This approach is fundamentally unsound however since the effective projection
onto the feasible region does not preserve relative priorities of each transition due to the exponentiation
operation. The redefined objective looks as follows:

61

L(p) =

N∑
i=1

N∑
j=1

p(i)π p(j)π k(xi, xj) +

M∑
i=1

M∑
j=1

S(pi)S(pj)k(yi, yj)−
N∑
i=1

M∑
j=1

2p(i)π S(pj)k(xi, yj) (B.3)

where

S(pt) =
C exp p(t)∑M
k=1 exp p

(k)

62

Appendix C

GridWorld Environment Specifications

C.1 Environment

(a) GridWorld-v0 (b) GridWorld-v1

Figure C.1: GridWorld environments. Both GridWorlds share an identical reward function and similar
dynamics. Agents can interact with the environments using standard OpenAI Gym API calls.

C.2 State space (S) and reward function

The different variants of states (s ∈ S) are summarised in Figure C.2.

State Variant Colour Reward on arrival (small) Reward on arrival (large) Halting
Lava Orange −1.764 −21.168 Yes
Goal Green 3.528 21.168 Yes
Floor Black 0 −0.12 No
Wall Grey 0 −0.12 No

Figure C.2: State space S

We have two reward modes we term small and large. Small reward mode provides complete sparsity,
and no reward shaping is done. Goal and Lava states are terminal. Lava states can be used to model the
reward penalties we would like to apply to OOD states-action tuples. We usually apply a light penalty
of −0.005 each step to encourage the agent to reach the goal faster in experiments where step penalty is
specified. This is the method used to evaluate our methods in Chapter 6.

63

In Large reward mode, rewards are larger and every state has an associate reward. This mode is used
in the exposition of the buffer alignment problem.

We encode an agent’s current state/position by specifying its (x, y) coordinates and orientation (North,
West, South or East). As such, state is encoded in a vector with 3 elements.

C.3 Action space (A)

At any given state that can be legally reached, the agent can either move forward, rotate 90 degrees left or
rotate 90 degrees right. Since Lava and Goal states are absorbing states, we can never execute an action
from them. Furthermore, moving forwards into a wall state keeps the agent in its original position. Note
that moving to an adjacent square can require anywhere between 1 and 3 actions. Combined with the
sparsity in the reward signal, this means that these environments provide significantly more challenge for
reinforcement learning agents than typical GridWorld test environments.

64

Appendix D

Offline Data Collection

We could configure offline data collection as needed for different tasks with different levels of state-action
space coverage.

1 def __transitions_for_offline_data(self , extra_data=False , include_lava_actions=False ,
exclude_lava_neighbours=False ,

2 n_step=1, cut_step_cost=False , GAMMA=OFFLINE_GAMMA):
3

4 self.pause_statistics ()
5

6 def neighbour_state_lava(col , row):
7 for n_col , n_row in [(col - 1, row), (col + 1, row), (col , row - 1), (col ,

row + 1)]:
8 cell = self.grid.get(n_col , n_row)
9 if cell is not None and cell.type == ’lava’:

10 return True
11 return False
12

13 def replicate(g, n, res):
14 if n == 0:
15 yield [n for n in res]
16 else:
17 for elem in g:
18 res.append(elem)
19 yield from replicate(g, n - 1, res)
20 res.pop()
21

22 for col , row , cell in self.offline_cells ():
23 if exclude_lava_neighbours and neighbour_state_lava(col , row):
24 continue
25 for dir in range(len(self.action_space)):
26 for action_sequence in replicate(self.actions , n_step ,
27 []):
28 self._gen_grid(self.width , self.height , (col , row), dir)
29 state_vector = torch.from_numpy(
30 np.concatenate(self.construct_state_vector(self.agent_pos , self.

agent_dir),
31 axis=None)).float().unsqueeze (0)
32 action_vector = torch.tensor ([[action_sequence [0]]] , requires_grad=

False)
33 cumulative_reward = 0
34 for i, action in enumerate(action_sequence):
35 fwd_cell = self.grid.get(*self.front_pos)
36 if include_lava_actions or (
37 self.actions.forward != action or fwd_cell is None or

fwd_cell.type != ’lava’):
38 _, reward , done , _ = self.step(action)
39 if cut_step_cost:
40 cumulative_reward += (reward - STEP_COST) * (GAMMA ** i)
41 else:
42 cumulative_reward += reward * (GAMMA ** i)
43 if done or i == (len(action_sequence) - 1):
44 next_state_trace = torch.from_numpy(

65

45 np.concatenate(self.construct_state_vector(self.
agent_pos , self.agent_dir),

46 axis=None)).float().unsqueeze (0)
47 reward = torch.tensor ([[cumulative_reward]],

requires_grad=False)
48 if i == (len(action_sequence) -1) and n_step > 1:
49 done = False
50 transition = Transition(state=state_vector.to(self.device

), action=action_vector.to(self.device), reward=reward.to(self.device),
51 next_state=next_state_trace.to(

self.device), done=torch.tensor ([[done]]).to(self.device))
52 yield transition
53 break

Listing D.1: Transition collection generator

66

Bibliography

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[2] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pages 2052–2062. PMLR, 2019.

[3] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[4] Pavlos Athanasios Apostolopoulos, Zehui Wang, Hanson Wang, Chad Zhou, Kittipat Virochsiri,
Norm Zhou, and Igor L Markov. Personalization for web-based services using offline reinforcement
learning. arXiv preprint arXiv:2102.05612, 2021.

[5] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[6] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[7] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep rein-
forcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293, 2018.

[8] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning dex-
terous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20, 2020.

[9] Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23:2613–2621,
2010.

[10] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[11] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pages 1587–1596. PMLR, 2018.

[12] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. arXiv preprint arXiv:1906.00949, 2019.

[13] Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked:
Behavioral modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396,
2020.

[14] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

[15] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

[16] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline rein-
forcement learning with diversified q-ensemble. Advances in Neural Information Processing Systems,
34, 2021.

67

[17] Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov,
and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. arXiv preprint
arXiv:2105.08140, 2021.

[18] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.

[19] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. arXiv preprint arXiv:1612.01474, 2016.

[20] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

[21] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:21810–
21823, 2020.

[22] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. A survey of
uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342, 2021.

[23] Christopher K Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

[24] Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss, and Balaji Laksh-
minarayanan. Simple and principled uncertainty estimation with deterministic deep learning via
distance awareness. arXiv preprint arXiv:2006.10108, 2020.

[25] Aditya Goel. Spectral-normalized-neural-gaussian-process-pytorch. [Online]. Available from: https:
//github.com/adityagoel4512/Spectral-normalized-Neural-Gaussian-Process-PyTorch/
blob/master/sngp.ipynb, 2022.

[26] Michael Held, Philip Wolfe, and Harlan P Crowder. Validation of subgradient optimization. Math-
ematical programming, 6(1):62–88, 1974.

[27] Laurent Condat. Fast projection onto the simplex and the $$\pmb {l}_\mathbf {1}$$ball. Math-
ematical Programming, 158(1):575–585, 2016. doi: 10.1007/s10107-015-0946-6. URL https:
//doi.org/10.1007/s10107-015-0946-6.

[28] William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International Confer-
ence on Machine Learning, pages 3061–3071. PMLR, 2020.

[29] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13(25):723–773, 2012. URL
http://jmlr.org/papers/v13/gretton12a.html.

[30] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

[31] Ewout Van Den Berg and Michael P Friedlander. Probing the pareto frontier for basis pursuit
solutions. SIAM Journal on Scientific Computing, 31(2):890–912, 2009.

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[33] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

68

https://github.com/adityagoel4512/Spectral-normalized-Neural-Gaussian-Process-PyTorch/blob/master/sngp.ipynb
https://github.com/adityagoel4512/Spectral-normalized-Neural-Gaussian-Process-PyTorch/blob/master/sngp.ipynb
https://github.com/adityagoel4512/Spectral-normalized-Neural-Gaussian-Process-PyTorch/blob/master/sngp.ipynb
https://doi.org/10.1007/s10107-015-0946-6
https://doi.org/10.1007/s10107-015-0946-6
http://jmlr.org/papers/v13/gretton12a.html

	Introduction
	Motivation
	Objectives
	Contributions

	Background
	Reinforcement Learning
	Offline Reinforcement Learning
	Challenges
	Current Approaches
	Model-free offline reinforcement learning
	Model-based offline reinforcement learning

	Uncertainty Estimation in Deep Neural Networks
	Gaussian Process Regression
	Deep Ensembles
	Spectral-normalised Gaussian Processes

	Convex optimisation
	Standard form
	Projected Gradient Descent

	Ethical Discussion

	The Sampling Alignment Problem in Deep Offline Reinforcement Learning
	Experimental Setup
	Explaining the unlearning effect
	A didactic example

	Offline Reinforcement Learning as a special case of off-policy learning
	How online off-policy Reinforcement Learning algorithms control D(,)
	Quantifying policy-buffer state action visitation divergence
	Defining a sample-based statistic
	Experiment

	Model Aligned Offline Reinforcement Learning (MAORL) (Known Unknowns)
	General Framework
	Nearest State-Action (NSA) Queue Alignment
	Incorporating OOD transitions
	Relation to Online Reinforcement Learning
	Implementation Details
	Drawbacks

	Gradient-based Alignment
	Optimisation Problem
	Projected Gradient descent to obtain feasible buffer priority alignment
	Incorporating OOD transitions
	Recovering hard alignment in a limiting case
	Convergence, Learning Rate and Kernel Choice
	Amortising the cost of maintaining kernel matrices
	Further Implementation Details

	Learning and Using Uncertainty Penalised Markov Decision Processes (Unknown Unknowns)
	Uncertainty-penalised Markov Decision Process
	Using Spectral-normalised Gaussian Processes (SNGPs) to learn an uncertainty-penalised MDP
	Developing and open sourcing a PyTorch SNGP library
	Learning uncertainty-aware dynamics models

	Evaluation
	GridWorld Results
	Methodology
	Training Return Log
	Final Policy Performance
	Comparison to model-based offline reinforcement learning methods
	Prefilling OOD transitions
	Moving initial point
	Qualitatively assessing alignment

	Conclusion
	Conceptual relationship to the state-of-the-art
	Buffer tuning
	What the dynamics model is used for

	Evaluation Limitation
	Future work and continuation plans
	Continuous control tasks and real world robotics
	Optimisation strategies for priority assignment
	Quantification of off-policyness
	Can we do alignment in a model-free fashion?
	Explictly codifying the experience replay buffer

	Experiment Details
	DQN Hyperparameters
	Dynamics Model (SNGP) Hyperparameters

	Attempted Optimisation Strategies
	GridWorld Environment Specifications
	Environment
	State space (S) and reward function
	Action space (A)

	Offline Data Collection

