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O Motivation and Aim

» Global Impact: Carbonates hold 60%
of reserves; prime targets for CCUS.

» Key Challenge: High heterogeneity
creates uncertainty in injectivity &
capacity.

» Business Value: Accurate Rel-Perm
data de-risks simulation and optimizes
field development plans.




[0 Motivation and Aim

Relative Permeability in
Sandstone

Extensive, Consistent,
Systematic, In-depth

Steady-state/Unsteady-state
methods ?

Relative Per curves
Hysteresis characteristics

Factors: Temperature; Pressure;
Structural Heterogeneity;
Wettability...

(Blunt, 2017; Krevor et al.,2012;
Chen et al.,2017; Bakhshian et
al.,2020)

Relative Permeability in

Carbonate
Limited, Inconclusive, General

Bennion and Bachu,2008
Unsteady-state method
Unclear relationship between pore structure
and relative permeability.
X

Akbarabadi and Piri, 2015
Steady-state method
low drainage relative permeability&strong

hysteresis
X
Smith et al.,2017

Steady-state method
Higher Kr in Carbonate (0.25 mD) vs.
Sandstone (850 mD)

)
Sedaghatinasab et al.,2021
Unsteady-state method
Higher absolute permeability increases both
initial and residual CO, saturations,
amplifying hysteresis.
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» The Gap: Existing data in reservoir
carbonates are scarce and
iInconsistent; mechanisms governing
trapping and hysteresis are poorly
understood.

» Objectives

» Measure relative permeabilities and
quantify hysteresis effects

» Track the evolution of CO, ganglia
and pore occupancy to identify
displacement processes

» Analyze the contributions of
structural heterogeneity and water-
wet properties
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[0 Experiment

Steady-State Relative Permeability
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O Pressure Difference
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» Overall Pattern: Increase—Maximum at 50%Brine50%CO,—Reduce
» Drainage: High initial hump (entry barrier); Minimal subsequent fluctuations
» Imbibition: No initial hump; Pronounced fluctuations (instability)



O Pressure Difference

1.2 - m\
: «/
=2
)

%

£ 0.8 \f 'h QW%MWWU '»m.www%
©
= .
Q 5 . ;,»‘
o ' i
5 :
) :
g ----- Drainage-25%Brine75%CO,
a 04- —— Imbibition-25%Brine75%CO,

OO u';\. ' I ! I ! [ ' I ! ! ! I !

0 500 1000 1500 2000 2500 3000

Time/min
» Overall Pattern: Increase—Maximum at 50%Brine50%CO,—Reduce
» Drainage: High initial hump (entry barrier); Minimal subsequent fluctuations
» Imbibition: No initial hump; Pronounced fluctuations (instability)



26" Pore-Scale Modelling and Imaging Meeting

» Drainage Endpoint: Maximum CO,
saturation reached 43%

» Imbibition Endpoint: Residual CO,
saturation was 27%

» Trapping Efficiency: High residual
trapping (~63% of initial saturation)

O CO, Saturation
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[d Relative Permeability

1.0

o
®

This Measurement
=k, krg-Drainage
= k.., krg-lmbibition

Measurement on a larger sample

+ k.. K

w» Krg-Drainage

2
5
©
O . .
£ 0.6 Akbarabadi and Piri,2015
o % Ky Kig_Drainage 7/
O sl *  Kus Kg_Imbibition )
204 y
S . 7
¢ 1R
_; - x
2] TR - Y
s g =
0_0 D.|.I,—~ T K ) | S S -'-I - *
0.6 0.7 0.8 0.9 1.0

Brine Saturation
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Brine Saturation

» Validation: Consistent with macro-scale and reference data
» Low Mobility: Low CO, phase permeability, despite high saturation
» Strong Hysteresis: Pronounced drainage-imbibition cycle disparity



Size disjribution _ S
' Volume-weighted size distribution--

L Ganglia Evolution
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» Drainage: Ganglia coalescence into a spanning
cluster; Normalized y drops from 5 (early
drainage) to -16 mm-= (end drainage) 4» | imbibition

(100%brine/0%CO,)
» Imbibition: The cluster was extensively
fragmented into dispersed, isolated ganglia;

Normalized y rises to 19 mm- i i A dg? 1€ 4g® g™
CO, ganglia volume/um?
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» Drainage: Preferential invasion of large pores—progressively smaller ones
» Imbibition: Water layers swell in narrow throats, causing snap-off
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O Potential Mechanisms

» System remains strongly water-wet
throughout
» Contact angle hysteresis is minor

Frequency

[ .
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Volume weighted frequency
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» Structural Heterogeneity

* Highly skewed, multimodal pore-throat
distributions

* Low coordination number (poor connectivity)

* Promotes snap-off and limits flow pathways

Frequency
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» Mechanism Quantification:
« Snap-off accounts for 17% of throat-filling
events during imbibition.
« Cooperative pore filling accounts for 38.6% of
pore events.

» Sensitivity Analysis: Varying contact angles
° showed only modest impact on rel per, confirming
structural heterogeneity as the primary control.
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https://github.com/ImperialCollegeLondon/pnflow

26" Pore-Scale Modelling and Imaging Meeting

» Quantified low CO, relative permeability and pronounced hysteresis in a reservoir
carbonate.

[0 Conclusions

» Poorly-connected CO, ganglia resulted in low relative permeability, while ganglion
fragmentation during imbibition led to hysteresis.

» Modeling indicated that snap-off was the dominant mechanism leading to a high
residual CO, saturation.

» These observations advance mechanistic knowledge of flow hysteresis and
trapping in carbonates, facilitating more accurate modeling for CO, sequestration
projects.

Future research: will account for Ostwald ripening to better predict long-term
cluster dissolution and refine estimates of trapped CO, in complex porous systems.
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