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1. Background and Motivation



Flow in porous media

• Fluid flow and mass transport in geological porous media play a key role in a 
number of significant geological applications.

Scanziani et al., Applied Energy (2020)

A scheme of CO2 storage in depleted oil reservoirs (Alhosani et al., 2020)



Micro-CT imaging

• The structure of rocks, and the fluids distribution are important for fluid 
flow and mass transport in porous media.

A typical laboratory micro-CT setup (Bultreys et al., 2015) A visualized Ketton carbonate rock core (Menke et al., 2015)
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Synchrotron-CT imaging

The Diamond Manchester Imaging Branchline (I13-2)



Synchrotron-CT imaging

4D Visualization of Drainage in the Rock Sample(Singh et al., 2017) 

Exceptional Speed

• Enables 4D imaging (3D + time),

allowing us to capture dynamic

processes in real-time.

High Resolution

• Resolves microscopic features down

to the sub-micron scale, making it

possible to visualize fine details of the

pore and fluids.



Semantic Segmentation

• The goal of segmentation is to assign a physical label to every single

voxel in the 3D image, classifying it as one of the distinct phases.

Why is it so Difficult?

• A time-series (4D) experiment consists of hundreds or thousands of 3D

volumes, creating datasets that are terabytes (TB) in size. Manually

processing this amount of data is impossible.

The Challenge:
multiphase flow image segmentation



The 4D segmentation dilemma

Option 1: A Full 4D Model-Prohibitive Memory Cost

• Training a full 4D U-Net on a representative data patch requires an estimated 40-70GB of

GPU memory (VRAM).

• Extremely high computational overheads and unacceptable training time.

• Impossible to prepare sufficient labelled data.

Option 2: Independent 3D Models-Temporal Inconsistency

• We lost the precious temporal information, which may likely cause inconsistent fluid

distributions along time dimension.

Key challenge

• How can we create a model that is computationally feasible like the 3D approach, but also

temporally consistent like a 4D approach?



2. Methodology



Temporal-Spatial SwinUNet



3. Current Results



Dataset

Experimental apparatus (Singh et al., 2017) 



Dataset
• Ketton limestone was used to implement training and test.

• Training dataset:

• Input size: 400 x 1000 x 1000 x 1000

• voxel size: 3.58 microns

• time scale: 38s

• Test dataset:

• Input size: 400 x 1000 x 1000

• voxel size: 3.58 microns

• time scale: 38s

• All training and inference tasks were performed on a server with 4 x NVIDIA A100 GPUs.

• It took around 72 hours to train, and 24 hours to inference.
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Next step

• Methodology: Sampling Protocol
– Temporal Stride (T=10):

• Ground truth labels are manually refined every 10-time steps. Total Samples: Approximate 80 high-quality labelled volumes 
(40 per process).

– Workflow: 
• Utilises "Model-Assisted Annotation" to focus solely on correcting topological errors, significantly reducing workload. Spatial 

Selection (Active Core): Instead of random cropping, we extract a 192 x 192 x 192 Representative Elementary Volume (REV).

– Criteria: 
• Selected based on Temporal Variance Maps to ensure the region contains the most active fluid displacement events.

• Evaluation Objectives: Trend Analysis
– Micro-Level Accuracy:

• Compute geometric metrics (Dice, IoU, HD95) on the 80 sampled keyframes.

– Macro-Level Physical Consistency:
• Saturation Profile (Sw): Plot and compare the water saturation curves of the Ground Truth vs. Prediction to verify mass 

conservation.

• Topological Evolution: Compare the Euler Characteristic curves to validate that the model correctly captures pore connectivity 
changes (e.g., Snap-off events) over time.
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