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Flow in porous media

« Fluid flow and mass transport in geological porous media play a key role in a
number of significant geological applications.

Waterflooding - Time

| Scanziani et al., Applied Energy (2020)

A scheme of CO, storage in depleted oil reservoirs (Alhosani et al., 2020)
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Micro-CT imaging

* The structure of rocks, and the fluids distribution are important for fluid
flow and mass transport in porous media.

Measurement techniques
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A typical laboratory micro-CT setup (Bultreys et al., 2015) A visualized Ketton carbonate rock core (Menke et al., 2015)
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Synchrotron-CT imagin
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Synchrotron-CT imaging

Exceptional Speed

« Enables 4D imaging (3D + time),
allowing us to capture dynamic

processes in real-time.

High Resolution

» Resolves microscopic features down
to the sub-micron scale, making it
possible to visualize fine details of the

pore and fluids.

4D Visualization of Drainage in the Rock Sample(Singh et al., 2017)
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The Challenge:
multiphase flow image segmentation

Semantic Segmentation

« The goal of segmentation is to assign a physical label to every single

voxel in the 3D image, classifying it as one of the distinct phases.
Why is it so Difficult?

» Atime-series (4D) experiment consists of hundreds or thousands of 3D

Greyscale image

volumes, creating datasets that are terabytes (TB) in size. Manually

processing this amount of data is impossible.

1 Qil
@B Brine
Segmented image @B Grains
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The 4D segmentation dilemma

Option 1: A Full 4D Model-Prohibitive Memory Cost

« Training a full 4D U-Net on a representative data patch requires an estimated 40-70GB of
GPU memory (VRAM).

« Extremely high computational overheads and unacceptable training time.

« Impossible to prepare sufficient labelled data.

Option 2: Independent 3D Models-Temporal Inconsistency

« We lost the precious temporal information, which may likely cause inconsistent fluid
distributions along time dimension.

Key challenge

« How can we create a model that is computationally feasible like the 3D approach, but also

temporally consistent like a 4D approach?
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2. Methodology
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3. Current Results
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Dataset

® Two-way valve
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-=-- Oil line
— CO, line
—— Confining fluid line
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Experimental apparatus (Singh et al., 2017)
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Dataset

«  Ketton limestone was used to implement training and test.

*  Training dataset:
* Input size: 400 x 1000 x 1000 x 1000
« voxel size: 3.58 microns
« time scale: 38s
- Test dataset:
* Input size: 400 x 1000 x 1000
« voxel size: 3.58 microns

* time scale: 38s

« All training and inference tasks were performed on a server with 4 x NVIDIA A100 GPUs.
* |t took around 72 hours to train, and 24 hours to inference.
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Visualisation
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4D vs 3D Model Comparison: Physical Properties Evolution (Frames 191-210)
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Evaluation
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Evaluation

Porosity Evolution (Highly Stable)

4D Segmentation Results: Temporal Evolution of Porosity and Saturation
(Frames 191-210)
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Next step

« Methodology: Sampling Protocol
— Temporal Stride (T=10):

*  Ground truth labels are manually refined every 10-time steps. Total Samples: Approximate 80 high-quality labelled volumes
(40 per process).
—  Workflow:
« Utilises "Model-Assisted Annotation" to focus solely on correcting topological errors, significantly reducing workload. Spatial
Selection (Active Core): Instead of random cropping, we extract a 192 x 192 x 192 Representative Elementary Volume (REV).
— Criteria:
+ Selected based on Temporal Variance Maps to ensure the region contains the most active fluid displacement events.

- Evaluation Objectives: Trend Analysis

— Micro-Level Accuracy:
+  Compute geometric metrics (Dice, loU, HD95) on the 80 sampled keyframes.

— Macro-Level Physical Consistency:
«  Saturation Profile (Sw): Plot and compare the water saturation curves of the Ground Truth vs. Prediction to verify mass
conservation.
+ Topological Evolution: Compare the Euler Characteristic curves to validate that the model correctly captures pore connectivity
changes (e.g., Snap-off events) over time.
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