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Direct Numerical Simulation of Incompressible Two-Phase Flow on 3D Images of Porous Media
Using the OpenFOAM Finite-volume Library
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1. Hydrogen Storage: Re™**~10 €= Viscous = &
High injection/withdrawal rates = recovery efficiency degrades due to gas flow instabilities 1]
2. Gas Diffusion Layers (GDLs): Re™**~1032 Anode Catalyst Cathode

e

3. Packed Beds: Re™%*~10% 3

[1] P. Jadhawar and M. Saeed, “Optimizing the operational efficiency of the underground hydrogen storage
scheme in a deep North Sea aquifer through compositional simulations,” Journal of Energy Storage, vol. 73,
p. 108832, 2023, doi: https://doi.org/10.1016/j.est.2023.108832.
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[2] J. Park and X. Li, “An experimental and numerical investigation on the cross flow through gas diffusion : GDL GDL
layer in a PEM fuel cell with a serpentine flow channel,” Journal of Power Sources, vol. 163, no. 2, pp. 853-863, 2007,
doi:https://doi.org/10.1016/j.jpowsour.2006.09.083
& [3] F. Suja and T. Donnelly, “Reynolds Number Calculation Method for Aerobic Biological Porous Packed Reactors,” vol. 18, Jan. 2006. /
[ Flow regime affects network characteristics e.g. permeability. J
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Onset of Non-Linearity in Multiphase Flow
Macroscopic Viscous vs Capillary Effects
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W = viscosity
q = Darcy velocity

o = interfacial tension

\_

/VP o« Ca linearin Darcy\

Experimentally:

Non-linearity begins at the
Intermittent Flow Regime.

Earlier than onset of
KForchheimer regime

/

Log,,(Pressure gradient, Pa/m)

[5] A. Anastasiou, |. Zarikos. A. Yiotis, L. Talon, and D. Salin, “Steady-State
Dynamics of Ganglia Populations During Immiscible Two-Phase Flows in
Porous Micromodels: Effects of the Capillary Number and Flow Ratio on

Effective Rheology and Size Distributions.” Transport in Porous Media, vol. 151,
pp. 1-25, Jan. 2024, doi: 10.1007/s11242-023-02041-0.
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[4]1Y. Gao, Q. Lin, B. Bijeljic, and M. J. Blunt, “Pore-scale dynamics and the multiphase Darcy law,” Phys. Rev. Fluids, vol. 5, no. 1, p. 013801, Jan. 2020, doi: 10.1103/PhysRevFluids.5.013801.
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Onset of Non-Linearity in Multiphase Flow
Universal Collapse: Macroscopic Permeability Trends

[ Expect effective dimensionless permeability K* to increase in the Intermittent Flow regime. ]

/Cf. Single-phase K* universal coIIapsh
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Onset of Non-Linearity in Multiphase Flow
Pore-Scale Intermittency

[ Intermittent effect observed in fixed region of space in experiment. ]

e I
Problem

Quantifying and predicting the intermittent effect at
the pore-scale via DNS

N /
100 um
1. Validate the observed early onset of non-linearity. 57 ,.
2. ldentify specific intermittent flow pathways. * U g

Scan number: 1

[6] C. Spurin et al., “The development of intermittent multiphase fluid flow pathways
through a porous rock,” Advances in Water Resources, vol. 150, p. 103868, 2021, doi:
https://doi.org/10.1016/j.advwatres.2021.103868.
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Onset of Non-Linearity in Multiphase Flow
Immiscible Liquid-Liquid Displacement in a Micro-Capillary

160 ym

/5
¥

Injection rate 10° um/s

Injection rate 850 um/s

[ Different flow regimes trigger different flow behaviour mechanisms J
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Onset of Non-Linearity in Multiphase Flow
Immiscible Displacement in Bentheimer Sandstone

Network-like structural connections in the pore-space complicate transient flow behaviour.
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Onset of Non-Linearity in Multiphase Flow
Two-Phase Co-Injection in Bentheimer Sandstone
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Two-phase flow transitions to steady state behaviour with clear intermittent regions.
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Next Steps

Problem
Quantifying the effect of intermittency at the pore-scale via DNS

~

 Build confidence in DNS 2f-solver accuracy
« Quantify macroscopic behaviour to pin down intermittent regime cf. experiment
« Compute effective flow properties and quantify their dependence on pore

geometry and flow rate. y

Direct Pore-Scale Simulation of Rate Effects in Single and Multiphase Flow
07/01/2026
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Summary

Problem
Quantifying the effect of intermittency at the pore-scale via DNS

/ Outcomes: \

1. Gain insight into the physics of the effect of intermittency.
2. Significantly reduce computational costs while maintaining the predictive power
over essential flow behaviour.

\_ Further implications for optimising designs of manufactured media, e.g. GDLs /

Thank you

Direct pore-scale simulation of the origins of intermittency in multiphase flow
07/01/2026
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Appendix: Motivation
Rate Effects

/ Hyd rogen Storage: \

emax _ 101

Reported maximum injection rate
Q =25 MMSCF/d

[1] M. Delshad, Y. Umurzakov, K. Sepehrnoori, P.
Eichhubl, and B. R. Batista Fernandes, “Hydrogen
Storage Assessment in Depleted Oil Reservoir and
Saline Aquifer,” Energies, vol. 15, no. 21, 2022, doi:
10.3390/en15218132.

in Sl units Q =8.195 m3/s
Average velocity in reservoir

8
v=iz—=0.4m/s
@A 0.2-100

Reynolds number

vd 0.09-04-10"°
Re = pYe ~ = 4(

U 8.9-10-6
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Gas Diffusion Layers (GDLs):

Re™® ~ 103
Example oxygen velocity
v=15m/s

[2] J. Park and X. Li, “An experimental and numerical
investigation on the cross flow through gas diffusion layer in
a PEM fuel cell with a serpentine flow channel,” Journal of
Power Sources, vol. 163, no. 2, pp. 853—-863, 2007, doi:
https://doi.org/10.1016/j.jpowsour.2006.09.08 3.

Effective velocity

Vo = =30m/s

~ o5
Reynolds number

ved _ 12-30-1073

u  18-10-5 = 2-10°

Re=p

1"

/ Packed Beds: \
Re™® ~ 10%

Example organic loading rate in
aerobic biological reactor

Q=13.39L/d

[3]1 F. Suja and T. Donnelly, “Reynolds Number
Calculation Method for Aerobic Biological Porous
Packed Reactors,” vol. 18, Jan. 2006.

in Sl units Q = 1.55 - 10* m?/s

Reynolds number

Re = 19500
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Appendix: Onset of Non-Linearity in Multiphase Flow
Macroscopic Viscous vs Capillary Effects
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