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Abstract
Optical elements with non-orthogonal eigenpolarizations have complex anisotropic properties,
which are not yet well understood. As an example of such elements, we studied theoretically
the class of white polarization sandwiches. Light passing successively through two identical
white sandwiches preserves its polarization state, so that, following the terminology of Berry
and Dennis, white polarization sandwiches can be regarded as non-trivial square roots of unity.

This paper presents a general Jones matrix of white polarization sandwiches and discusses
its spectral properties. It further discusses a way to synthesize white sandwiches. Our analysis
shows that a general white polarization sandwich has complex anisotropic properties
comprising all four basic anisotropy mechanisms: linear and circular dichroism and linear and
circular birefringence. Several simple examples of synthesized white sandwiches show,
however, that the form, orientation and rotation direction of their eigenpolarization ellipses can
be easily controlled by changing a single parameter of the constituent elements. The results
could contribute to understanding the properties of optical elements with non-orthogonal
eigenpolarizations and, more generally, elements with anisotropic absorption.

Keywords: polarization, optical element, Jones matrix, eigenpolarization, eigenvalue,
anisotropy

1. Introduction

Any non-depolarizing optical element belongs to one of
two broad classes [1]: homogeneous elements, which have
orthogonal eigenpolarizations, and inhomogeneous elements,
which have non-orthogonal eigenpolarizations. Homogeneous
elements are traditionally regarded as simpler, and more
basic, than inhomogeneous ones. The basic anisotropy
mechanisms [2] (linear and circular dichroism and linear and
circular birefringence) are homogeneous and so are the basic
polarization elements (polarizers, retarders, and rotators) [3, 4].

4 Author to whom any correspondence should be addressed.

In addition, any combination of non-absorbing elements—
and, more generally, any non-absorbing optical crystal—is also
homogeneous [5].

Inhomogeneous elements, on the other hand, often
have more complex anisotropic properties than homogeneous
ones. Non-orthogonal eigenpolarizations of inhomogeneous
elements require a combination of several anisotropic
mechanisms, including anisotropic absorption. Degenerate
polarization elements [3], whose eigenpolarizations collapse
into one, are the classical example of inhomogeneous elements.
An upsurge of interest in the properties of inhomogeneous
elements in the mid-90s was triggered in a paper by Lu and
Chipman [6] who applied the polar decomposition [7, 8] for
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their analysis. Degenerate elements were further studied in
a number of recent publications (see e.g. [9–11]). Another
class of inhomogeneous elements, non-orthogonal polarizers
with one zero eigenvalue, was discussed by Tudor [10, 12].
Despite the recent developments, much remains to be done in
understanding the properties of inhomogeneous elements.

In [13], Berry and Dennis considered yet another class of
inhomogeneous elements: they showed that optical elements
consisting of any specimen placed between two crossed ideal
polarizers have equal eigenpolarizations. They called such
elements black polarization sandwiches. Because the 2 × 2
Jones matrices [3, 4] of black sandwiches obey the relation

TblackTblack = 0, (1)

these elements can be regarded as non-trivial square roots of
zero [13].

This paper discusses the class of elements complementary
to black sandwiches, with the Jones matrices obeying the
relation

TwhiteTwhite = A exp(iψ)I, (2)

where I is the 2 × 2 identity matrix; A and ψ are arbitrary
constants. Following Berry and Dennis [13], we call these
elements white polarization sandwiches. Light interacting with
the combination of two identical white sandwiches preserves
its polarization state. White sandwiches can be thus seen as
non-trivial square roots of unity; they are a non-trivial model of
the free space. The constants A andψ characterize an arbitrary
isotropic absorption and phase shift; the isotropic absorption
assures that white sandwiches remain passive [14].

In section 2, we derive and analyze expressions for the
Jones matrices of white sandwiches and show that white
sandwiches are inhomogeneous elements. In section 3, we
discuss the synthesis of white polarization sandwiches by
a combination of four basic polarization elements, and we
further show how the eigenpolarizations of white sandwiches
can be controlled. Finally, we draw conclusions in section 4.

2. Analysis of white polarization sandwiches

Presenting the Jones matrix of a white sandwich in the form

Twhite =
(

T11 T12

T21 T22

)
, (3)

and substituting it into (2), we obtain

T11 = −T22. (4)

Equation (4) is necessary and sufficient for a 2×2 Jones matrix
to describe a white polarization sandwich.

Two eigenpolarizations and two eigenvalues constitute the
spectrum [15] of a Jones matrix. A convenient way to describe
eigenpolarizations mathematically is by the complex variable,
χ , [3, 4] given by

χ1,2 = T22 − T11 ± √
(T22 − T11)2 + 4T21T12

2T12
. (5)

Figure 1. Two orthogonal polarization states have polarization
ellipses of equal form, with opposite rotation direction, and with
orthogonal axes.

With the help of the complex variable, the orthogonality
condition for two polarization states reads

χ1χ
∗
2 = −1, (6)

where the asterisk denotes complex conjugation.
Polarization states can be graphically presented by the

polarization ellipse [3, 4]. The polarization ellipses of
two orthogonal polarization states have equal form, opposite
rotation directions, and their axes are perpendicular to each
other, as shown in figure 1.

Substituting (4) into (5), we obtain for the eigenpolariza-
tions of white sandwiches

χ1,2 = −T11 ± √− det Twhite

T12
. (7)

Because (6) does not, in general, hold for (7), these eigenpo-
larizations are not orthogonal. The eigenvalues, characterizing
the absorption and phase shift of the eigenpolarizations, have
for the white sandwiches the form

V1,2 = ±√| det Twhite|. (8)

Because |V1/V2| = 1, both eigenpolarizations are equally
absorbed.

3. Synthesis of white polarization sandwiches

The analysis presented in section 2 has been quite
straightforward. Equation (4) determines the Jones matrix
model for white polarization sandwiches, and it provides
the basis for the analysis of the spectral properties of these
elements, (7) and (8). Written in symbolic form, (4) does not
determine, however, which anisotropic mechanisms are able to
constitute a white sandwich. It also does not answer a closely
related question of how a white sandwich can be synthesized
by conventional optical elements: polarizers, retarders and
rotators.

The problems of the analysis and synthesis of white
polarization sandwiches in terms of realistic, measurable,
anisotropy parameters can be solved by applying the general
decomposition theorem formulated in [16]. This theorem
states that any non-depolarizing element can be presented by
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Figure 2. An arbitrary polarization element can be presented by a
sandwich consisting of a partial linear polarizer, a partial circular
polarizer, a retarder and a rotator.

a sandwich of four basic elements: a partial linear polarizer, a
partial circular polarizer, a retarder and a rotator (figure 2). The
Jones matrix, T, of an arbitrary polarization element can then
be written in the form [16]

T = TRot(ϕ)TRet(�, α)TCirPol(R)TLinPol(P, γ ), (9)

where

• TLinPol(P, γ ) is the matrix of the linear polarizer

TLinPol(P, γ )

=
(

cos2 γ + P sin2 γ (1 − P) cos γ sin γ
(1 − P) cos γ sin γ sin2 γ + P cos2 γ

)
(10)

with the relative absorption of two orthogonal linear
polarizations P and the azimuth γ ;

• TCirPol(R) is the matrix of the circular polarizer

TCirPol(R) =
(

1 −iR
iR 1

)
(11)

with the relative absorption of the left- and right-circular
polarization states R;

• TRet(�, α) is the matrix of the retarder

TRet(�, α) =
(

cos2 α + exp(−i�) sin2 α

[1 − exp(−i�)] cosα sinα

[1 − exp(−i�)] cosα sinα
sin2 α + exp(−i�) cos2 α

)
(12)

with the phase shift between two orthogonal linear
polarizations � and the azimuth α;

• TRot(ϕ) is the matrix of the rotator

TRot(ϕ) =
(

cosϕ sin ϕ
− sinϕ cosϕ

)
(13)

with the rotation angle ϕ.

Explicit expressions for the elements of the generalized
matrix (9) are unwieldy; they are given in the appendices
of [16] and [11], and we do not reproduce them here.
Substituting equations (A1)–(A3) from the appendix of [11]
into (4), we obtain, after some algebraic calculations, the

following expressions for the anisotropy parameters of the
generalized matrix (9)

(1 + P) cos

(
�

2

)
cos ϕ + (1 − P)R sin

(
�

2

)

× sin[ϕ − 2(α − γ )] = 0

(1 + P)R cos

(
�

2

)
sinϕ + (1 − P) sin

(
�

2

)

× cos[ϕ − 2(α − γ )] = 0.

(14)

We wish to emphasize here that (14) defines an arbitrary
white sandwich and does so in terms of measurable anisotropy
parameters. Together with (9), this expression presents the
generalized matrix model of white sandwiches. Solution
of (14) allows one to determine which anisotropic mechanisms
can constitute a white sandwich and also to synthesize an
arbitrary white polarization sandwich by a combination of
basic optical elements. Below, we consider three examples
of synthesized white sandwiches that consist only of two
elements.

3.1. Linear polarizer followed by a retarder

Taking R = 0 (no circular polarizer), ϕ = 0 (no rotator),
� = π (half-wavelength retarder), γ = 0, and α = π/4
satisfies (14). The corresponding element consists of a linear
polarizer with zero azimuth followed by a half-wavelength
retarder with the azimuth π/4; its Jones matrix (ignoring the
isotropic multiplier) is

T =
(

0 P
1 0

)
. (15)

As easily seen, TT = PI, hence the element considered is
indeed a white sandwich. Its eigenpolarizations are

χ1,2 = ± 1√
P
, (16)

and the corresponding eigenvalues are

V1,2 = ±√
P . (17)

The eigenpolarizations are two linear polarizations oriented
symmetrically against the x-axis, figure 3(a), at the angle given
by

tan 2θ = 2
√

P

1 − P
. (18)

By changing the relative absorption of the polarizer, P , it is
possible to control the angle between the eigenpolarizations.

For the ideal polarizer, P = 0, the eigenpolarizations
collapse into one linear polarization oriented along the x-axis.
The corresponding eigenvalues become zero, indicating total
absorption of the eigenpolarizations: the white sandwich turns
into a black one.
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Figure 3. The eigenpolarizations of white sandwiches are
non-orthogonal; they are linear for the sandwich consisting of a linear
polarizer and a half-wavelength retarder (a), and elliptical for the
sandwich consisting of a linear polarizer and a 90◦ rotator (b) and for
the sandwich consisting of a circular polarizer and a half-wavelength
retarder (c). The angle between the eigenpolarizations (a) and the
form of the polarization ellipses (b) and (c) can be controlled by
changing the relative absorption of the polarizers.

3.2. Linear polarizer followed by a rotator

A similar polarization element is obtained by taking, in (14),
R = 0 (no circular polarizer), � = 0, α = 0 (no retarder),
γ = 0, ϕ = π/2. The element consists of a linear polarizer
followed by a 90◦ rotator; its Jones matrix is

T =
(

0 P
−1 0

)
. (19)

The eigenpolarizations and eigenvalues of this white sandwich
are

χ1,2 = ± i√
P
, V1,2 = ±i

√
P. (20)

The eigenpolarizations have two equal polarization ellipses
oriented along the x-axis but with two different rotation
directions, figure 3(b). For the ellipticities, we get

sin 2|ε| = 2
√

P

1 − P
, (21)

and, therefore, by changing the relative absorption of
the polarizer, it is possible to control the form of the
eigenpolarization ellipses.

This polarization sandwich is also interesting because it
belongs to the class of elements described by the second Jones
equivalence theorem [5]. Whereas the fist Jones equivalence
theorem, capable of describing the optical properties of
crystals outside their absorption bands, is widely used, the
second theorem has not received much attention. The above
example shows that the Jones matrix described by the second
equivalence theorem is the model of a two-element white
sandwich.

3.3. Circular polarizer followed by a retarder

For the next example, we choose P = 1, γ = 0 (no linear
polarizer), ϕ = 0 (no rotator), � = π , α = 0. The white
sandwich consists of a circular polarizer followed by a half-
wavelength retarder; the corresponding Jones matrix is

T =
(

1 −iR
iR −1

)
. (22)

The eigenpolarizations and eigenvalues are

χ1,2 = i
−1 ± √

1 − R2

R
, V1,2 = ±

√
1 − R2. (23)

The ellipses of the eigenpolarizations are oriented along the
x-axis and the y-axes, figure 3(c). Note, however, that
because the rotation direction is the same for both ellipses, the
eigenpolarizations are not orthogonal (compare with figure 1).
For the ellipticity of both ellipses, we get

sin 2ε = R, (24)

so that the form of the ellipses can be controlled by changing
the partial absorption of the circular polarizer.

4. Conclusions

The class of white polarization sandwiches considered
in this paper is a counterpart of the class of black
polarization sandwiches of Berry and Dennis. Whereas
the eigenpolarizations of black sandwiches always coincide,
the eigenpolarizations of white sandwiches can differ from
each other, being non-orthogonal in general. As a result,
the anisotropic properties of white sandwiches are more
complex than those of black sandwiches. The derived
matrix model shows that an arbitrary white sandwich
can comprise polarization elements with all four basic
types of anisotropy. By considering several examples of
synthesized white sandwiches, we have shown that the
orientation of the eigenpolarization ellipses, their form,
and rotation direction can be controlled by changing the
properties of the constituent elements. These results
could contribute to further understanding the anisotropic
properties of inhomogeneous optical elements, and more
generally, systems demonstrating anisotropic absorption, such
as absorbing optical crystals [17], liquid crystals [18], complex
solutions [19] and metamaterials [20, 21], a new and rapidly
developing area of optics.

4



J. Opt. 12 (2010) 035702 O Sydoruk and S N Savenkov

References

[1] Shurcliff W A 1962 Polarized Light (Cambridge, MA: Harvard
University Press)

[2] Landau L D and Lifschitz E M 1984 Electrodynamics of
Continuous Media (Oxford: Pergamon)

[3] Azzam R M A and Bashara N M 1987 Ellipsometry and
Polarized Light (Amsterdam: Elsevier)

[4] Brosseau Ch 1998 Fundamentals of Polarized Light (New
York: Wiley)

[5] Hurwitz H and Jones R C 1941 A new calculus for the
treatment of optical systems II. Proof of three general
equivalence theorems J. Opt. Soc. Am. 31 493–9

[6] Lu S-Y and Chipman R 1996 Interpretation of the Mueller
matrices based on polar decomposition J. Opt. Soc. Am. A
13 1106–13

[7] Whitney C 1971 Pauli-algebraic operators in polarization optics
J. Opt. Soc. Am. 61 1207–13

[8] Gil J J and Bernabeu E 1987 Obtainment of the polarizing and
retardation parameters of non-depolarizing optical system
from polar decomposition of its Mueller matrix Optik 76
67–71

[9] Meira-Belo L C and Leitão U A 2000 Singular polarization
eigenstates in anisotropic stratified structures Appl. Opt.
39 2695–704

[10] Tudor T 2003 Generalized observables in polarization optics
J. Phys. A: Math. Gen. 36 9577–90

[11] Savenkov S N, Sydoruk O I and Muttiah R S 2007
Eigenanalysis of dichroic, birefringent, and degenerate

polarization elements: a Jones-calculus study Appl. Opt.
46 6700–9

[12] Tudor T 2006 Non-Hermitian polarizers: a biorthogonal
analysis J. Opt. Soc. Am. A 23 1513–22

[13] Berry M V and Dennis M R 2004 Black polarization
sandwiches are square roots of zero J. Opt. A: Pure Appl.
Opt. 6 S24–5

[14] Barakat R 1987 Conditions for the physical realizability of
polarization matrices characterizing passive systems J. Mod.
Opt. 34 1535–44

[15] Lancaster P and Tismenetsky M 1985 The Theory of Matrices
(San Diego, CA: Academic)

[16] Savenkov S N, Marienko V V, Oberemok E A and
Sydoruk O I 2006 Generalized matrix equivalence theorem
for polarization theory Phys. Rev. E 74 056607

[17] Newnham R E 2005 Properties of Materials: Anisotropy,
Symmetry, Structure (Oxford: Oxford University Press)

[18] Scharf T 2007 Polarized Light in Liquid Crystals and Polymers
(Hoboken, NJ: Wiley)

[19] Arteaga O, Canillas A, Purrello R and Ribo J M 2009 Evidence
of induced chirality in stirred solutions of supramolecular
nanofibers Opt. Lett. 34 2177–9

[20] Decker M, Klein M W, Wegener M and Linden S 2007 Circular
dichroism of planar chiral magnetic metamaterials Opt. Lett.
32 856–8

[21] Decker M, Ruther M, Kriegler C E, Zhou J, Soukoulis C M,
Linden S and Wegener M 2009 Strong optical activity from
twisted-cross photonic metamaterials Opt. Lett. 34 2501–3

5

http://dx.doi.org/10.1364/JOSA.31.000493
http://dx.doi.org/10.1364/JOSAA.13.001106
http://dx.doi.org/10.1364/JOSA.61.001207
http://dx.doi.org/10.1364/AO.39.002695
http://dx.doi.org/10.1088/0305-4470/36/36/309
http://dx.doi.org/10.1364/AO.46.006700
http://dx.doi.org/10.1364/JOSAA.23.001513
http://dx.doi.org/10.1088/1464-4258/6/3/004
http://dx.doi.org/10.1080/09500348714551471
http://dx.doi.org/10.1103/PhysRevE.74.056607
http://dx.doi.org/10.1364/OL.34.002177
http://dx.doi.org/10.1364/OL.32.000856
http://dx.doi.org/10.1364/OL.34.002501

	1. Introduction
	2. Analysis of white polarization sandwiches
	3. Synthesis of white polarization sandwiches
	3.1. Linear polarizer followed by a retarder
	3.2. Linear polarizer followed by a rotator
	3.3. Circular polarizer followed by a retarder

	4. Conclusions
	References

